Investigation into remote monitoring of complex
network systems

MSc Professional Computing
Dissertation Stage

Jonathan Andrew Haddock
Staffordshire University
h000112a@student.staffs.ac.uk
jonathan.haddock®bcs.org

A project submitted in partial fulfilment of the requirements of
Staffordshire University for the degree of Master of Science

September 2014
Supervised by James McCarren

Jonathan Haddock, 10000112

1 ABSTRACT

1 Abstract

This project looked to address the problem of IT system outages by reducing the amount of
time the system would remain down. RESO (REduce System Outages), an Android smart-
phone app, provides system administrators a secure way to view system health and remotely
instigate corrective action.

Given the wide variety of network monitoring systems in use, RESO does not aim to only
detect the state of the IT environment’s health, but instead will take data from other applica-
tions which could then be extended to output data based on the required XML specification.
Projects such as Nagios/Icinga can be easily extended to output XML in the required format.

A proof-of-concept system has been designed and built showing how such a configuration
would work - further work would be required to make the solution fully operational.

2 Jonathan Haddock, 10000112

CONTENTS

Contents
1 Abstract 2
2 Acknowledgements 6
| Introduction 7
3 Introduction 7
4 Background 8
5 Hypothesis 8
6 Business case 9
6.1 Summary 9
6.2 Whowill thisbenefit? 9
6.3 Summary ofbenefits o L 11
6.4 ImpactonthelTteam. 11
6.5 Costestimate. L 12
6.6 Estimatedsavings 13
6.7 Resourceestimate o 13
6.8 Risks 13
6.9 Consequences of project rejection L. 13
Il Literature review & existing solutions 15
7 Project Management 15
7.1 Traditional / Waterfall 15
7.2 Agile Software Development 16
7.3 Testdrivendevelopment 17
74 Iterative and incremental development 18
8 Monitoring systems 19
9 Cloud computing 22
10 Existing solutions 23
10.1 Nagios e 24
10.2 Smokeping 26
103 Ganglia 27
10.4 GFI Max Remote Management 28
11 Encryption 29
11.1 Encryption on mobile deviceso L. 31
12 Literature review conclusion 31
Il Research 33
13 Research methods 33
13.1 Research methods conclusion 34
14 Workplace observations 34

3 Jonathan Haddock, 10000112

CONTENTS

15 Survey research 35
15.1 Reasoning behind questions 35
15.2 Survey responseanalysis oL 36
153 Conclusion 40

16 Interview responses 40
16.1 Conclusion L 41

17 Research conclusions 42

IV Solution 43

18 Security considerations 44
18.1 Thedevice 44
182 Theuser 44
18.3 Cloning the device and disgruntled employees 45
18.4 Remote control - arbitrary commands 46
18.5 Distributing command details 47

19 System design 49
19.1 Mobile platforms Lo 52
19.2 Requirements L 53

19.2.1 Hardwaresupport 53
19.2.2 Secure communications 0L 54
19.2.3 Instigate correctiveaction 55
19.2.4 Pushnotifications Lo oL 55
19.2.5 Interoperability 56
193 ControlServer L 56

20 Solution development 58
20.1 Generatingthe Ul 59
20.2 Deviceidentifier o L o 60
20.3 Addingencryption 62
20.4 Google Cloud Messaging (GCM) 63

21 Deployment and usage scenarios 65

V Testing and validation 68

22 Testing 68
22.1 Hardware platforms 69
222 Encryption 71
22.3 Replay attackdefence 72
224 Pushnotifications L 73
22.5 Protecting against unauthorised devices 74
22.6 Protecting against unauthorised users 74

4 Jonathan Haddock, 10000112

CONTENTS

VI Conclusions and evaluation

23 Key contributions

24 Reflection on achievements related to aims and objectives
25 Comparison to the research field

26 General strengths and weaknesses

27 Commercial value

28 General conclusions

29 Further work

VIl Appendix

A Survey questions

B Interview questions

C XML Specification

D RESO App source code
D.1 XML: RESO App, AndroidManifestxml
D.2 XML: RESO App, strings.xml
D.3 Java: RESO App, Aboutjava
D4 XML: RESO App,aboutxml
D.5 XML: RESO App, advancedprefsxml.
D.6 Java: RESO App, AdvancedPrefsjava
D.7 Java: RESO App, AESjava
D.8 XML: RESO App, detail.xml
D.9 Java: RESO App, DetailXMLjava
D.10 Java: RESO App, GemBroadcastReceiverjava
D.11 Java: RESO App, GemMessageHandlerjava
D.12 XML: RESO App, loginxml
D.13Java: RESO App, Loginjava
D.14 Java: RESO App, Mainjava
D.15 XML: RESO App, main menu.xml
D.16 XML: RESO App, preferences.xml
D.17 Java: RESO App, Preferencesjava
D.18 Java: RESO App, ServerListjava

E Java: RESO Control Server
E.1 Java: RESO Control Server, Mainjava
E.2 Java: RESO Control Server, AESjava

F Glossary

Acronyms

5 Jonathan Haddock, 10000112

75
75
75
76
44
78
78
78

2 ACKNOWLEDGEMENTS

2 Acknowledgements

The author would like to acknowledge the feedback provided by those anonymously respond-
ing to survey questions. Thanks are also given to Jason Bramley and Andrew Cassidy who
were interviewed as part of this project to better understand requirements of IT administra-
tors. No fees were paid to any respondents who gave their time voluntarily.

The Internet community at sites such as stackoverflow.com and various blogs has been
invaluable at finding solutions to problems as this author has learnt Java, providing examples
and often saving many hours.

Thanks also go to James McCarren, this author’s supervisor at the University of Staffordshire,
for his guidance and support during the course of this project.

6 Jonathan Haddock, 10000112

stackoverflow.com

3 INTRODUCTION

Part I

Introduction

3 Introduction

The challenge of this project will be to develop new monitoring approaches suitable for a
rapidly changing industry. The medium used for remote monitoring is also changing along
with developments in voice and hand controlled interfaces. The security implications will
also be considered, specifically “if an IT Manager can monitor a system remotely, can it also
be influenced remotely?”.

A number of existing monitoring solutions are available, both commercial and open-source
(products such as Nagios, GFI Max Remote Management); this paper will critique their
approaches also investigate the wider issues relating to system health monitoring.

Part Il will review existing literature on the topics of project management, monitoring sys-
tems, cloud computing and encryption while also investigating existing network monitoring
solutions. Results of primary research can be found in part Il (sections 15 and 16) with an
analysis of this author’s survey and interviews can be found. This research was critical to
understanding the requirements of the IT administrator community.

Based on information gathered in earlier sections the system design and implementation
is discussed in part IV with testing and final conclusions found in parts V and VI respec-
tively. This document ends with references and an appendix detailing questions from the
survey/interview and a glossary of terms.

7 Jonathan Haddock, 10000112

5 HYPOTHESIS

4 Background

Over the last 50 years there has been a fundamental change in computer networks. Whereas
historically IT within a business was a self-contained system, with servers and clients being
located together or geographically close, the Internet changed how the system operates. Now
it is not uncommon for clients to be a significant distance from their server, or for servers in
different offices to need to communicate. It is not unreasonable for clients to communicate
with a server on a different continent. For the I'T Manager, a problem exists in how to manage
a system where the client may be in Australia while the server is in London. Additionally, IT
professionals are often expected to travel between sites so are not always at their computer
in order to monitor and remotely connect to the network.

System downtime may not be an entire network but simply one area where there is a form
of denial of service. For example, a busy shipping office may lose income if a printer failure
caused by lack of ink prevents them from producing shipping notes. As another example,
the failure of a company’s main PBX can cause loss of customer confidence if the business
is particularly phone orientated. The estimated financial loss caused by system outages
varies, however, research by Emerson Network Power in 2011 suggests data centre down
time costs $5,600 per minute (Emerson Network Power, 2011). In order to remain of value
to the company, an IT manager needs to minimise downtime and receiving near-instant
notifications of problems can assist in this.

It is this author’s opinion that mobile technology is an under-utilised area of technology that,
despite being key to receiving email on the move has not benefited the administrator fully.

5 Hypothesis

It is this author’s view that mobile devices are underutilised by network administrators when
monitoring networks and responding to detected problems. Although responding to an inci-
dent from a remote, mobile, device has security implications it is also this authors view that
risks can be mitigated or brought to a more acceptable level.

8 Jonathan Haddock, 10000112

6 BUSINESS CASE

6 Business case

Businesses often require a formal business case for any expenditure, especially given the
economic climate of 2014. If an organisation were to invest in a project such as this the
following business case may be appropriate. Where costs are used they are taken from
responses to interview questions (see section 16).

6.1 Summary

Implementing a network monitoring system with support for remote fixes

As the organisation’s reliance on IT grows it becomes increasingly necessary to ensure the
uptime of systems providing services to customers. It is estimated the cost of downtime of all
systems for one business day would be £17,000, not to mention the cost to the company's
reputation.

This business case outlines the proposal to implement a network monitoring solution, detailing
the benefits in a range of business areas. Investing in the preferred route, providing the
necessary hardware and software solution, is suggested to cost approximately £800 plus in-
house development time (existing department smart phones would be used, saving costs).
Conversely, the cost of not implementing the system is significantly more. Research has
shown that an IT health monitoring system is essential to the success of the business as this
allows problems to be dealt with when detected, rather than once end-users begin reporting
the fault. Interviews with other IT professionals showed that in their business the costs of
implementing a monitoring system were far outweighed by the benefits and savings provided
by the system.

The Company's IT department would be responsible for implementing this project.

6.2 Who will this benefit?

The organisation

More and more of a company'’s activities are computer based. Computers are involved in the
majority of processes from communicating with customers by email, receiving and logging
telephone queries to finance and service delivery. Put simply, if there is an outage of the

9 Jonathan Haddock, 10000112

6 BUSINESS CASE

system at least one company employee is not able to work and the company is losing money.
System outages are also frustrating for users, potentially causing them to look for employment
elsewhere.

A Network Monitoring System (NMS) will enable IT to better respond to problems, poten-
tially before they become apparent to end users and customers, providing a better service
and overall experience.

Customers
Consistent system uptime allows the company to serve its customers, be that when they
phone customer services or use the company’s website. System outages, such as to a core
website feature as shown below, can cause customers to turn away which in turn leads to
lost revenue.

Where a customer is unable to use the company’s services there will be a negative impact
from a publicity perspective with customers taking to services such as Twitter and Facebook
to vent their frustration. Negative publicity in turn causes lost revenue as the company's
reputation drops.

International VOIP Ltd - Chromium - 0 %

| International VOIP Ltc =

A, www.internationalvoip.ltd

Unable to connect to database

There is a problem connecting to the database and this site will be unavailable
until this problem is resolved.

If you have any queries, please contact Customer Services on 01227 111111

IT Department

Currently the IT department is responsible for monitoring all services required and offered
by the company. Performing these checks by hand significantly adversely affects the depart-
ment's ability to provide user support and innovative solutions. By reducing the administrative
burden the IT department will be able to better serve the company, presenting an increased
return on investment within that team.

10 Jonathan Haddock, 10000112

6 BUSINESS CASE

6.3 Summary of benefits

IT department is notified of systems experiencing an outage

IT department can monitor the overall health of the system, detecting factors that will
become a problem if left unchecked

Proactive, preventative maintenance

Fixes can be applied remotely, without a traditional network connection

The final point is key. For a large number of problems the resolution can be triggered through
a single command (or collection of commands in a script). By being able to remotely trigger
these commands from a dashboard, systems can be repaired regardless of the location of
the administrator providing they have a data connection. With the proliferation of mobile
networks offering 3G and 4G services this is more possible than ever before.

6.4 Impact on the IT team

The IT team spend approximately half a day each day making checks on servers to ensure they
are operating correctly and performing tasks key to the business’ IT resilience. Implementing
a monitoring system will free up members of the team to better service the Company’s users
and allow them to design and implement new projects and resources.

As an example, the table below shows estimates of the IT manager's day-to-day work both
with and without the system.

Task Time estimate Time with monitoring system
Check server | 3 minutes per server, 30 minutes total 2 minutes

disk space

Check Anti- 15 minutes 2 minutes

virus environ-

ments

Audit servers | 5 minutes per server, 50 minutes total 2 minutes (read report)
for “hack at-

tempts”

TOTAL: 1 hour 55 per day 6 minutes per day

Saving of 1 hour 49 minutes per day. This illustration is based around 10 servers

11 Jonathan Haddock, 10000112

6 BUSINESS CASE

6.5 Cost estimate

Software and licensing costs

Assumed as zero cost

It is intended to use Free Open Source Software (FOSS) for the majority of the system. While
this is not commercially supported there is expertise within the existing team to implement
and maintain the proposed system.

Commercial systems, such as GFl Max Remote Management cost upwards of £5 per mon-
itored device, by using FOSS there's a clear cost saving. Despite the costs of the system
being low, training on the system would incur a cost in either time or course fees.

Hardware cost estimate

£800 (ex-VAT, as at September 2014)

It is proposed the monitoring system runs on a dedicated physical server in order to reduce
complexity in the deployment. Although a Virtual Machine (VM) could be used this would
potentially negatively skew the system'’s output dependant on the hypervisor's load. A hyper-
visor is software that allows a computer to run multiple operating systems, simultaneously,
on the same hardware. Examples of hypervisors are VMware ESXi and Microsoft Hyper-V.

Dell R220 server

Intel 3.4GHz processor

8GB RAM

2x 500GB SATA HDD, RAID 1

Dual NIC

e 1 PSU

Existing department smart phones would be used as these are capable of running Android an
any such app which is developed.

Total cost estimate
£800 plus in-house development time

12 Jonathan Haddock, 10000112

6 BUSINESS CASE

6.6 Estimated savings

Presently when the IT manager is away on business it is necessary to hire in third-party
contractors to manage the system unless there are other employees with relevant expertise.
By moving to this system, which allows the network manager to remotely apply fixes from
his mobile device, a saving of £800 per day in hire charges can be immediately realised.
Similarly travel costs may be saved where problems occur out of hours with the network
manager being able to respond within minutes from the mobile device versus the time and
cost of having to get to and use a computer to connect in. The cost of this is harder to
quantify, however, with every minute of downtime costing the company both financially and
reputationally the cost savings should be significant.

6.7 Resource estimate

Research and development time is required to design, install and implement the system in
addition to producing the necessary mobile device components. It is estimated this would
take 80 man-hours.

6.8 Risks

This project has few dependencies, notably dedicated hardware and project time, resulting
in low risks. In the event that project team members were unavailable the project would
be delayed, however, this would not have a noticeable impact on the Company’s users or
customers.

Overall, this project can be classed as low risk.

6.9 Consequences of project rejection

Rejecting this project offers no benefit to the organisation, and in fact harms it, as system
outages will need to be reported by users at which time there is already a problem. Unplanned
system downtime equals lost revenue for the Company and although this can’t be predicted
it is known outages can cost the Company upwards of £17,000. Additionally, the Company
will not save money by rejecting this project as members of the IT department will need to be

13 Jonathan Haddock, 10000112

6 BUSINESS CASE

dedicated to monitoring system health which will result in a net loss in available man-hours
for other tasks. In turn this may require the hiring of additional staff with a consequent
increase in company costs.

As mentioned, system outages also have negative implications from a public relations and
reputation perspective. While the costs of this cannot easily be quantified there is a potential
drop in consumer-base which should be considered.

14 Jonathan Haddock, 10000112

7 PROJECT MANAGEMENT

Part I1

Literature review & existing solutions

7 Project Management

For irregular tasks, such as developing an application or building a house, various project
management techniques are used to ensure a project completes successfully. Similarly, routine
tasks are subject to written procedures which are followed. In project management, a project
is split into stages with guidance given for each stage. Generally, a project ends once the task
is appraised and signed off as complete, a process which may include a “snagging list” where
the customer identifies areas for modification. Not every project reaches the completion
stage with projects being deemed too costly or suspended.

Although there are numerous models for project management there are common elements
across the schemes. Analysis of the tasks and requirement gathering often form the first
tasks of a project allowing planning to follow. The initial requirements and analysis will be
used in the design phase and later to evaluate the success of the project. The authors of
The Pragmatic Programmer tell us that it is unreasonable to expect to understand all the
requirements of a project by merely listening to the end user. Instead, the programmer needs
to observe the users to fully comprehend system requirements and completely meet the needs
of the business (Hunt and Thomas, D., 1999, p.204).

Project management is essential from a financial perspective as costs and the duration of the
project are determined and maintained by following set controls. Perhaps most importantly,
project management provides a direction for the project and by monitoring progress the
direction can be maintained, avoiding the risk of a runaway project that doesn't fulfil the
required outcomes.

7.1 Traditional / Waterfall

The traditional model, also known as waterfall, takes feedback from one project stage and
feeds it in to the next. Despite waterfall being a widely recognised model, and one still
taught in schools, Royce explains in his paper that an iterative approach is best. Contrary to
popular belief, Royce does not advocate the use of the waterfall model in his paper, merely

15 Jonathan Haddock, 10000112

7 PROJECT MANAGEMENT

outlining it in his opening pages (Royce, 1970).

In environments where goals are static and not subject to change the waterfall method
does have its uses. Requirements are outlined at the outset and work is conducted based
on the specification - there is little scope for change within the waterfall model. Software
development is a dynamic process where requirements change regularly making the traditional
method less applicable to modern software development.

SYSTEM
REQUIREMENTS

"\

SOFTWARE
REQUIREMENTS

=\

ANALYSIS

-~

PROGRAM
DESIGN

CODING

=\

TESTING

"\

OPERATIONS

Figure 1: The waterfall project management methodology (Royce, 1970)

Waterfall is criticised for placing software testing at the end of the process, often when the
project budget is near to used if not overspent (figure 1).

7.2 Agile Software Development

Agile software development expects specification changes and appreciates that not all re-
quirements can be discovered prior to project commencement. A focus of Agile is to provide
software in a short time frame on the understanding the customer would rather have working
software than reams of documentation. Collaboration is also a value of the model and is
encouraged both within the development team and with the customer. By consulting the

16 Jonathan Haddock, 10000112

7 PROJECT MANAGEMENT

customer regularly, developers are expected to react to changes in requirements in preference
to following a rigid plan as would be expected within the waterfall model.

Agile is relatively young, formalised in 2001 with the publication of the Agile Manifesto
(Beck, K. et al., 2001). The manifesto does not discard practices that are prioritised in
other management styles but instead values them differently. In the case of documentation,
the manifesto states that “working software” is more valued than “comprehensive documen-
tation”, a stance that can make software developed under Agile methods more difficult to
support. The methodology is based on 12 principles which include:

e Frequent software updates - software should be released regularly. Progress is measured
by the working state of the software.

e Changing requirements shouldn’t be discouraged - requirements are expected to change
and this should be welcomed.

e Attention to detail - programmers should strive to write code in line with best practices
and by following a good design.

Agile also details how project stakeholders should communicate, explaining that face to face
communication is best and teams should be able to organise themselves. Customers should
be consulted regularly, both when determining the original requirements and as the project
progresses; Agile highlights a satisfied customer is key to the project.

7.3 Test driven development

Test Driven Development (TDD) could be considered as working backward when compared
with other approaches. Traditionally code has been written to a specification and then tested
by the developer or QA teams once the code is available. In TDD the test is written first,
based on the specification provided. Once a test has been written the full test suite is run
and the new test should fail as there is no code to support it yet; if the test passes then
it should be re-written. Following a failure run of the new test the code is written and the
test suite run again. So long as the test passes the code can then be refactored, tidied and
moved to the correct location in the program logic and the next test is written. The first
revision of the code is designed to pass the test and is not expected to be perfect.

Another goal of TDD is to remove duplication wherever possible. Firstly, duplication is
inefficient: it's difficult to manage multiple instances of the same logic and makes source
code larger. Admittedly, storage is cheap by modern standards, however, compilation time

17 Jonathan Haddock, 10000112

7 PROJECT MANAGEMENT

may not be. Secondly, if a change is required it must be made in multiple places. For
example, in Test driven development: by example(Beck, 2002) the author gives an example
of a system with a dependency on a SQL server. If the SQL server type were to change (for
example from Microsoft SQL to Oracle) it would be necessary to make multiple changes if
code was needlessly duplicated.

Figure 2 explains this process more clearly.

———————————————————— —Repeal- — —

Test
succeeds

Test(s) fail

All tests
succeed

Figure 2: Cycle of test driven development(Excirial and Renier, M, 2009)

7.4 Iterative and incremental development

Despite the waterfall model shown by Royce in Managing the development of large software
systems(Royce, 1970) it should be noted the author himself states that although the "wa-
terfall” model is valid it “is risky and invites failure” (Royce, 1970, p.329) and he spends
the remainder of the document advocating iterative practices. In Iterative and Incremental
Development (1ID) a project is split into smaller portions which are worked on, tested and
adapted before moving on to the next segment. Not all developers consider the segmenting

18 Jonathan Haddock, 10000112

8 MONITORING SYSTEMS

of a project to be beneficial as this can lead to software with a poor architecture as the
system has not been considered as a whole (Atkinson and Hummel, O., 2012). This author
considers the problem is largely dependant on the practice of an individual developer - if
the developer considers the system as a whole when dividing the system then this issue is
reduced.

1D has become associated with the Agile development movement, however, it seems to
pre-date this by some time. Possibly the most famous project to use [ID was the NASA
project “Mercury” and we see in [terative and Incremental Development:A Brief History the
approach has been around since at least 1968 (Larman and Basili, V.R., 2003). Cockburn
gives clear examples of how iterative and incremental development can be performed indi-
vidually highlighting how the methods work better together(Cockburn, 2008). Incremental
approaches involve segmenting the system and building each component, later integrating it
into the whole system as each component is completed. [teration is the process of improving
what already exists following feedback or the results of testing.

Figure 3 shows this author’s understanding of this process based on an amalgamation of the
diagrams in Using Both Incremental and Iterative Development (Cockburn, 2008).

8 Monitoring systems

All monitoring systems require configuration. A common problem when configuring a moni-
toring system is that in order to be effective the administrator needs to know the acceptable
values for each check. For example, an administrator could configure a hard disk free-space
check to only alert when 1GB is free. This may not be a problem for a print server configured
with few resources, however, could cause a Microsoft Exchange server to stop routing mail
because the minimum required disk space is 10GB. System misconfiguration can lead to sys-
tem downtime and when the misconfigured system is the one designed to assist in preventing
downtime the system has failed in its goals.

Nagios is a powerful monitoring system which this author has used previously to monitor an
estate of around 20 servers plus switches and printers. Although the solution performed the
required task, alerting administrators to problems, the configuration was threshold based.
Although an alert was flagged the system was not able to provide additional guidance,
therefore administrators were left to troubleshoot. While this was not a problem in a medium
sized environment it wouldn't scale to the data centre.

This author is also familiar with GFI Max Remote Management which, again, is threshold

19 Jonathan Haddock, 10000112

8 MONITORING SYSTEMS

—m» Design -=-

+ \ Refresh based

Code a part | on feedback

Part + / II

| Test —
|complete
‘ ¢ When acceptable

Figure 3: Cycle of IID based on Cockburn (2008)

based. Both GFIl and Nagios allow the administrator to provide custom scripts, facilitating
a wide range of checks, but as with the overall configuration these scripts are not immune
to error. It has been observed that some checks are left disabled, particularly performance
checks, as these appeared to be generating false positives. On reflection, it is more likely the
check was misconfigured, the defaults not being appropriate to the server being monitored.
A lack of historical baseline will have contributed to the configuration error and Sun et al.
discuss this in their paper (Sun et al., 2006).

Sun et al. outline 3 weaknesses of existing monitoring software as configuration, reasoning
and a lack of historical data (Sun et al., 2006). To be correctly configured an administrator

20 Jonathan Haddock, 10000112

8 MONITORING SYSTEMS

must have expertise in managing the system so the systems optimal baseline must be con-
sidered. The administrator must set thresholds appropriately for each check (see the disk
space example above) enabling the system to alert on discovering a problem. The authors
explain reasoning as the problem an administrator encounters when receiving a single alert
- knowing the alert has been triggered still leaves the administrator the task of determining
the root cause of the problem. Finally, a lack of historical data makes it near impossible to
determine the optimal baseline for a system, making configuration difficult but also making
any alert solely down to the threshold set potentially months before.

Sun et al. produced InteMon which was designed to monitor large data centres and clusters by
analysing data and highlighting deviations from the measured norm. The authors describe an
example victory for InteMon where although the temperature of the data centre was within
tolerance the air intake was found to have excessive humidity causing the air to be over-
cooled (Sun et al., 2006, p.51). Traditional systems may not have noted this problem, given
temperature wasn't effected, however, system administrators were prompted to check the air
intake before the air conditioning’s reheat cycle elevated the room temperature. InteMon
flags anomalies by comparing present data with historical data, allowing it to generate an
alert should a problem be noted.

It is not unusual for monitoring systems to generate support tickets when detecting a problem,
however, as Tang et al. note in their paper, transient events, for example a spike in CPU or
memory usage, can cause a ticket to be raised. Once a ticket is created human interaction
is required, inflicting costs as their IT staff are required to investigate and resolve. Where an
administrator does not need to take any action the ticket can be classed as a false positive.
Research showed that for the monitored environment 75% of transient alerts could be cleared
automatically after 20 minutes so these were classed as false positives(Tang et al., 2013).

The term false positive is widely used and understood to be something which
has flagged incorrectly. For example, a false positive alert in an IT monitoring
system might be a notification that a server is off-line when it is not. Some
transient alerts may also be classed as a false positive as there is no work for an
administrator to do.

Less common is the term false negative, the occasion that a problem is not
detected. Misconfiguration can lead to many false negatives, perhaps a service
not being highlighted as unavailable. Checks need to be relevant and checking
a web service is available to “localhost” is not the same as verifying the site is
available to external users (an example of a misconfiguration which may produce
a false negative).

21 Jonathan Haddock, 10000112

9 CLOUD COMPUTING

9 Cloud computing

Cloud computing is being increasingly adopted by companies as a means to provide IT
facilities to their employees. Generally there are two types of cloud - public and private.
Computing has changed dramatically in recent years following the removal of the requirement
for clients and servers to be near to each other. As evidence of this growth, it is expected
the UK cloud computing market alone could be worth approximately £10.5 billion in 2014 -
a growth of over £4 billion in 4 years (Smith, 2012, p.2).

Whereas monitoring a system used to be as simple as checking on a handful of servers “in the
next room”, an organisation's server estate may now be significantly bigger and geographically
spread thanks to good communications links. To further complicate environments, servers
may be held in a data centre to which the administrator has no physical access.

Cloud computing allows access to resources (files, databases, software) from a multitude of
devices at numerous locations rather than previous reliance on locally installed applications
and stored files (Smith, 2012, p.2). The concept of supplying services via the Internet is
not new, previously being referred to as Application Service Provision (ASP) in the 1990s.
Dramatic changes in the provisioning of services, particularly what is required of the customer,
has transformed ASP into cloud computing, now an IT buzzword and growing industry.

Public clouds are managed by a third party and an organisation is billed for their usage.
Examples include Microsoft Azure and Amazon EC2. A benefit of the public cloud is reduced
cost as costs are shared by many organisations through “rental” fees. Microsoft Azure,
an example of a public cloud, offers numerous services at low cost including cloud hosted
databases.

Private clouds are accessed only by the organisation which “owns” it, meaning that organ-
isation is responsible the initial setup and ongoing maintenance. de Chaves, S.A. et al.
comment in their paper (de Chaves, S.A. et al., 2013) that security of a private cloud is “not
a major concern when compared to a public cloud” due to access being provided through
internal interfaces. They don't appear to consider the wider implications relating to system
misuse once the cloud resources are compromised. In the same paper, the authors comment
that monitoring has not kept pace with the expansion of cloud services and that there isn't
a single solution to this problem.

The term hybrid cloud has also come into use and describes a scenario where some resources
are accessed from dedicated servers while others exist in a cloud hosting environment. Hybrids
may be used where there is a need to keep highly sensitive data fully controlled or as part
of a migration from a private to public cloud setup. Additional processing power can also

22 Jonathan Haddock, 10000112

10 EXISTING SOLUTIONS

be obtained through cloud bursting, a situation where some processing is passed off to often
more powerful cloud based servers.

10 Existing solutions

Where possible, academic case studies and research have been referenced as part of this
evaluation, however, these were not always available. Some vendor provided case studies
have been referenced but should be considered excessively biased in favour of the vendor.
Personal experience of this author is also included.

Existing solutions largely fall into two groups, paid-for and free, and examples of both cat-
egories have been examined. Using Google Trends, which shows the total number of times
a precise search term has been used in a given time period using the Google search engine,
the following graph has been produced. This graph suggests Nagios is the most common
system monitoring solution investigated (and, therefore, potentially used) although it should
be noted that this graph is not a guaranteed indicator as to which system is most in use.
GFIl Max Remote Management doesn’t register on the graph, potentially due to this product
being offered via a Managed Solution Provider which then re-brands the product.

Search trends by month, 2013

o0 [Googla)

350
300
250

200

Saarchas

50
R —— ——
u]
Jaruary Fabiiary March Apnl Meay June July Aisgast Septernber Oxtober Movenbar Dacembar
Month
—nagios —icinga ibm tiveli ——gfi max remote management ——ganglia openview

Figure 4: Most common search terms - monitoring systems

Monitoring can either be active or passive. For active monitoring, an agent or utility is
installed on the server or device and this agent submits its data to a central monitoring
server. GFl Max Remote Management is one example of active monitoring. Where there

23 Jonathan Haddock, 10000112

10 EXISTING SOLUTIONS

is no additional software installed on the device, monitoring is considered to be passive and
results are obtained from “the outside”. Smokeping and Nagios are examples of passive
monitoring.

Active monitoring may provide more detail as the full Operating System (OS) is exposed
to it. Conversely, passive monitoring has to rely on firewall exceptions and services on the
monitored device exposing themselves and their information to the network. Some tools,
such as NSClient++, used with Nagios, expose additional information to passive solutions.
In this example, Nagios itself is still considered passive as it is not responsible for the agent
installed on the device.

10.1 Nagios

Of the papers reviewed, a number chose to expand on Nagios, an open source monitoring
solution (it should be noted there is now a commercial version of Nagios, Nagios XI). The
main criticism appears to focus on the difficulty of configuration (Issariyapat et al., 2012)(Wu
et al.,, 2013). To configure checks there are numerous text files to which details must be
added. In this author’'s experience the configuration is also case-sensitive so specifying a
server's name as FileServer in one place but Fileserver in another (an easy mistake)
will potentially result in an error.

When troubleshooting problems it has already been indicated that historical information is
of benefit (Sun et al., 2006). Nagios provides this feature although in a primitive fashion (it
was criticised by Issariyapat et al. in their paper). Issariyapat et al. cite another problem
with Nagios is a lack of consistent primary keys (as a monitored node can change name,
adding historical monitoring via a plug-in is problematic as historical data would be lost on
name change) (Issariyapat et al., 2012, p.2772).

Nagios' greatest strength appears to be its flexibility and architecture. Plug-ins and modules
can be added to provide additional functionality. The Nagios Core documentation states
there are a “several methods of integrating Nagios with the management software you're
already using” (Nagios Core Development Team, 2010, p.325) and shows the architecture
of Nagios as in figure 5. Administrators need not change the main source code of Nagios
to add a feature as integration points allow for this instead. This design is advantageous as
third-party additions are not lost each time an update to Nagios is released.

Given this extensibility it is possible to monitor virtually anything in Nagios so long as a
script can be written - the tool can be used to monitor more than just traditional computers.
Monitoring server room temperature, for example, in addition to the availability of servers

24 Jonathan Haddock, 10000112

10 EXISTING SOLUTIONS

Wab Interface Extarnal Programs
& * * |
I | ¥ ¥
- Ratantion External
Lag Fila Hatus File Filo Config Files Command File

r o [Y

k4 ki b 4 h 4

Nagios Daemon

{Core Logic)
Maonitoring Motification Parformance
Logh Logh Evant Loghi Lagis
i -
-,
L] L] oy ¥
Pluting Eotification Ewvant OCxP Performanco
4 Cammands Handbers | | Commands Procossars
: ¥ ¥ ¥ ¥
Hosts and
e Contacts External Applications

Figure 5: Nagios architecture (Nagios Core Development Team, 2010)

can quickly alert administrators to excessive temperatures in a server room which are the
likely cause of some service problems.

Issariyapat et al. highlight that a simple ICMP ping check as provided by check_ping is not
sufficient to confirm if a host is up or down as many devices now do not respond to ping.
Thanks to Nagios' flexibility they produced an additional check, check accessibility
which monitors availability of a host based on ping and TCP / UDP port checks. The
web-based interface to Nagios is also limited so Issariyapat et al. produced NetHAM which
generates output based on results provided by Nagios. NetHAM is also capable of showing
what links are active between devices, using information obtained via Simple Network Man-
agement Protocol (SNMP), and considers redundant links. This allows the authors to show
Switch A is connected to Server 1 by 2 connections and that one connection is done. This
is not possible in Nagios which only supports a basic parent/child relationship.

Icinga is a fork of the Nagios project and aims to address some of the criticisms mentioned
above. It aims to be backwards compatible with Nagios, maintaining compatibility with

25 Jonathan Haddock, 10000112

10 EXISTING SOLUTIONS

plug-ins and extensions.

10.2 Smokeping

Smokeping focuses on providing graphical representations of latency to an administrator. In
figure 6 we see a clear indication that latency is greater during a backup (the graph has been
annotated to highlight this) and due to the clear nature of these graphs administrators are
able to quickly troubleshoot problems. That said, troubleshooting was only possible because
the system administrator knew the effect the backup had on network connectivity to the
server in question - it was still necessary for a human to interpret the graph.

Last 30 Hours

-
160 m
28 m
B0 m
|
70 m
vi |
-
c 0 m Backup started
u 38 m
LT}
Y anm
30 m
Backup
2 m stopped
18 m N
o _ i i i ;

Thu 12: 08 Fri 00:08

median rtt: 29.4 ms avg B88.3 ms max 383.3 us min E90,.0 us now 34,0 ms sd 863.8 m am/s
packet loss; Q.00 % avg ©.00 % max ©.080 % min ©@.00 % now

loss coloer: OO0 EH1l/20 WZ2/20 HW3/20 W 4/20 B 1le/zo0 W 19/20

probe: 20 ICMP Echo Pings (56 Bytes) every 300s end: Fri Jan 27 10:04:47 2012

Figure 6: A Smokeping graph showing ping latency to a server before, during and
after its backup

Smokeping is not as comprehensive in its checks as Nagios although there are many plug-ins
available providing numerous checks. Similar to Nagios, Smokeping’s configuration is based
on text files and the syntax is equally awkward (albeit, in this author’s opinion, easier to
become proficient with). Slave nodes can be configured which read their configuration from
the master host. This approach has the advantage that not only saves the administrator
time but also that multiple Smokeping hosts can be placed on a network so a variety of
measurements can be taken. This is especially useful if the physical LAN is large and slowness
is only detected in certain geographical areas.

Through changes to the configuration it's possible to adjust the size of packet sent for
each test (by default, tests repeat every 5 minutes). The type of packet and test can also be
adjusted, Smokeping provides support for standard ICMP ping, HT TP and generic connection

26 Jonathan Haddock, 10000112

10 EXISTING SOLUTIONS

tests and ICMPv6 ping. Cody-Kenny et al. used Smokeping to monitor round trip time for
ICMPvV6 packets over a wireless sensor network and they showed packet loss was virtually 0,
despite increasing the packet size. Smokeping also showed round trip time increased with
packet size.(Cody-Kenny et al., 2009)

Alerts can be sent by email or Simple Network Pager Protocol when Smokeping detects
increased latency.

10.3 Ganglia

Unlike the solutions reviewed above, Ganglia is an active solution with a daemon!, gmond,
running on each monitored node. Ganglia then uses multicast traffic to ensure each node
is aware of the overall health of the cluster (Massie et al., 2004, p.821). As gmond listens
on a well-known multicast address on each node there is no need to manually configure
membership of the Ganglia monitoring system - it is essentially configured by auto-discovery.

A second daemon, gmetad, is used to gather information from multiple nodes and can
be used to federate information from multiple clusters. A web front end is used to view
performance and health data which is stored in RRD format. RRDTool, the same tool as
used by Smokeping, is then used to produce graphs of this data.

Massie et al. studied the impact on cluster resources and found this varied based on cluster
type. Across 3 cluster types CPU usage for gmond was less than 1% with both physical
and virtual memory usage below 17MB (Massie et al., 2004, p.830, table 4). Due to its
low overheads, Ganglia is well suited to the multi-node cluster with a very small, likely
insignificant, percentage of resources being lost to the monitoring system.

Wau et al. used a combination of Nagios and Ganglia in their project: Ganglia to collect data
and Nagios to query that data and raise alarms as required (Wu et al., 2013). This, again,
demonstrates how one solution is not sufficient.

'Linux and similar systems have “daemons”, Windows systems have “services”

27 Jonathan Haddock, 10000112

10 EXISTING SOLUTIONS

10.4 GFI Max Remote Management

GFl Max Remote Management is an active solution. In order to monitor systems, an agent
is installed on the device and checks are configured. Windows and Linux agents exist.

Each monitored system reports back to a central server which provides an overview of system
health via a web-based dashboard. Alerts can be sent via email or SMS text message and an
API exists enabling 3rd party services to access data. In addition to providing an overview of
system health, the dashboard provides remote control features in the form of a remote shell or
a full interactive view of the computer. The latter is provided by another integrated product
called Team Viewer. Although remote control is provided, it is not possible to remotely
instruct a service to stop/restart in the event of a problem. For service management, the
agent can attempt to restart the service before alerting the administrator. Compared to
passive solutions like Nagios this is a distinct advantage of an active design.

Due to the agent based nature of this solution it's possible to obtain more detailed information
on each system as all data is exposed to the client (subject to the agent's access rights).
Additional checks can be configured through user provided scripts, authored in any language
supported on the monitored OS.

An Android app exists for the system but has been heavily criticised on the Android Play
Store as being an incomplete solution with a poor interface. The mobile app doesn’t offer
remote control and must be connected to the central dashboard by use of an API key, making
it difficult to terminate a user’'s access. An iPhone app is also available.

No academic case studies were available so the above is based on this author's own experience
of the product. Numerous vendor provided case studies are available and these, predictably,
are biased to show how this product saves their clients money. It should be noted that one case
study, with CCR Technology group, stated they had been able to “reduce their workforce”.
This shows a wider implication of IT health monitoring systems in that companies can reduce
staff numbers due to less work being required. (GFI Max, 2012).

28 Jonathan Haddock, 10000112

11 ENCRYPTION

11 Encryption

Encryption can be divided into 2 categories, symmetric and asymmetric(Simmons, 1979),
and is key to sending information through an insecure environment such as the Internet
(Bryan and McDermott, J., 2011). For symmetric encryption there is only one key which is
shared between parties (hence this method also being known as shared key). Symmetric key
encryption is explained in figure 7.

1) User A Z2)Keyis sentto UserB 3) A encrypts the document
generates a and sends to B
key
Agp | @ LB @IE— D
T) S E 43 B decrypts the document
(V) |+ O = E:;?g the previously shared

Figure 7: Symmetric key encryption

A weakness of symmetric encryption is found not in its mathematical algorithms but in its
basic premise - anyone with the shared key can decrypt the data (see figure 8) so how do
you protect and distribute the key? One solution to this problem is to avoid it altogether
by using asymmetric encryption (Burke et al., 2000, p.1), illustrated in figure 9, but the
simplest solution is to strictly control access to the key. Initial key exchanges must be secure
(Parnerkar et al., 2003) and can be performed using physical media, such as a CD ROM, in
person. The media can then be physically secured to restrict access by unauthorised parties.
Although this approach reduces risk it does not solve the problem of a key compromise
exposing all encrypted transmissions.

Asymmetric encryption involves the use of 2 keys per entity in order to help protect against
this issue. The concept of a public? and a private key are fundamental to this mechanism.
Each party generates a public/private key pair and public keys are exchanged. The method
of exchange does not matter so can be via an insecure mechanism including widespread
publishing. Private keys should be protected and not be shared under any circumstances. It
is computationally infeasible to derive the user's private key from the public key (Parnerkar
et al., 2003).

When a file is encrypted with a user’s public key it can only be decrypted with the corre-

ZPublic keys should not be confused with shared keys. Although a public key is shared the terms
refer to components in different encryption schemes

29 Jonathan Haddock, 10000112

11 ENCRYPTION

sponding private key and the reverse is true. For this reason it doesn't matter if a user's
public key is intercepted as the encrypted data cannot be decrypted with it. Figure 9 explains
this more clearly.

1) User A 2)Keyis sentto UserB8 3) A encrypts the document
generates a and intercepted by the and sends to B, again
key Attacker intercepted by the

Attacker

A “ f‘_f_.n,_,/ - ﬂ_,w.rx,l ".f_-"-"] B
-
- &b
-

Attacker

-y - "';-J I '~ _[-h-.-"“-q.___ -
N, [@#_ _—|=| 4) Both the Attacker and B
decrypt the document using

o, L Y S e the key
@ fE=a=">F

Figure 8: Symmetric key encryption suffers from problems if the key is intercepted

1) Users generate 2) Users exchange 3) User A encrypts a
public & private public keys file with B's public
key pairs key and sends it,

file is intercepted by

Al an aftacker
ARy @D a0

i
!

- @ O®n)
B An OO | @ O—n L =
Y O - = 0
O®n - Attacker

4y B decrypts the file with their

ffﬁ“.""“-i [@Tﬁl\;’% private key.

L T —

]

The Aftacker cannct decrypt

‘-’ [FE O @ the file, even with B's public

key.

Figure 9: Asymmetric encryption doesn’t suffer the same interception problems

30 Jonathan Haddock, 10000112

12 LITERATURE REVIEW CONCLUSION

11.1 Encryption on mobile devices

Mobile devices are valuable targets for information thieves due to their portability and small
size. The news regularly features stories about data loss following devices being left on pubic
transport and while losing a device and its contents is always a financial problem the impact
on companies can be reduced by encrypting storage. Options for encryption vary dependant
on platform; some OSes have encryption built in (for example, BitLocker in some editions of
Windows) whereas others require features to be added from other vendors (such as Truecrypt
although it should be noted the Truecrypt project was closed May 2014).

Although Android devices have featured encryption as part of the OS for some time, Wang
et al. ported EncFS to Android as part of their project to offer protection of data on mobile
devices (Wang et al., 2012). Their research showed there was a negligible overhead involved
in reading from the encrypted file system yet a 20x overhead when writing.

Symmetric encryption is less processor intensive so is preferable from a mobile device's per-
spective, where battery life should be considered. To prevent the key being brute forced (i.e.
“guessed” by systematically attempting values) a strong key should be used. If using a key
based on a text string the text should not be a standard dictionary word.

12 Literature review conclusion

Ruling out the waterfall methodology was accomplished early on, in part due to Royce
explaining how the method was flawed in his paper but also due to concerns that a non-
iterative system can result in problems at the testing stage. It is this author’s belief that
testing should take place throughout a project. Agile was also excluded as it doesn’t appear
to fit with a single developer with no defined customer - there's no scope for regular meetings
and nothing to release until the project meets the requirements outlined in section 19. Test
driven development, although powerful, was not appropriate here as the author was learning
to use the relevant language during this project so would not have sufficient knowledge to
create relevant tests prior to writing code.

This author generally employs an iterative and incremental approach when working on projects
as this allows results to be seen during development with feedback acted on immediately. As
such this approach was chosen for this project.

A single tool is not sufficient for monitoring today’'s systems which are often specific to a

31 Jonathan Haddock, 10000112

12 LITERATURE REVIEW CONCLUSION

particular need. For example, Ganglia is better suited to clusters where each node must know
about every other node at all times. Nagios has been shown to be regularly criticised when
it comes to configuration but is equally praised for its extendibility. Both active and passive
approaches to monitoring are important, again implemented based on need.

The challenge of any monitoring system is to keep false-positives and false-negatives to a
minimum to ensure an accurate overview of the environment is presented at all times. It
is not uncommon to use multiple tools to achieve this goal. Tools should have a minimal
performance impact on the systems being monitored and provide historical data for analysis
wherever possible. Clearly storing historical data requires additional storage capacity, how-
ever, there is no need for this to be stored on expensive, fast, disk arrays. Historical data is
not critical to business practice so storing it online on slow media should not cause a problem.

Where support tickets are generated automatically by monitoring systems there is a financial
implication as a human administrator must investigate the “fault”. As has been mentioned,
false-positives will have a negative impact on an IT Department’s “bottom line” in financial
terms.

With IT systems becoming increasingly more dynamic thanks to cloud computing and prac-
tices such as “cloud-bursting” it is necessary for monitoring systems to also become dynamic.
Whereas cloud computing providers may pass this responsibility off to consumers it is reason-
able for the provider to require an overview of each OS instance running on its infrastructure
(if for no other reason than billing purposes). Monitoring is not simply the domain of the IT
administrator but increasingly that of the accounts department too.

Encryption is only as strong as its encryption keys so measures must be taken to protect
these. If the key is compromised the encryption schema is moot and the message revealed
so care must be taken to protect key exchange (Parnerkar et al., 2003)(Burke et al., 2000).

32 Jonathan Haddock, 10000112

13 RESEARCH METHODS

Part 111

Research

13 Research methods

There are numerous research methods, the most commonly referenced being qualitative and
quantitative although basic and scientific are also mentioned (Glenn, 2010). Glenn tells us
basic research (also known as fundamental or pure) is often driven by the researcher’s curiosity
and may have no end point or goal in mind. As a result it can be difficult to receive funding
or support from sponsors. Basic research can provide a foundation for further research.

Scientific research follows a process, often aiming to support or disprove a hypothesis. It
should be noted that a hypothesis is not “proven” as it is not possible to absolutely state
something is true (Glenn, 2010). Scientific research may be shared verbatim to allow others
to repeat and validate the results. A definition of scientific research is:

To be termed scientific, a method of inquiry must be based on gathering observ-
able, empirical and measurable evidence subject to specific principles of reason-
ing. A scientific method consists of the collection of data through observation

and experimentation, and the formulation and testing of hypotheses.
(Glenn, 2010, p.12)

Although it is possible to statistically measure whether IT administrators feel there is a benefit
to using mobile devices to monitor system health through use of surveys and interviews it
is not possible to divine the features of such a system using scientific methods. Feature
requirements will be subjective and it's unlikely that all individuals would agree on the chosen
features.

Qualitative research was typically used for social sciences until the 1970s where after it
became a multi-discipline research method. Its purpose is to gain an in-depth understanding
of why and how the study matter is. There was a view in the 1930s that social research had
all the theories it required and that qualitative research could only build on these, however,
as observed by Glasser and Strauss, A.L. not all the theories of the “masters” fit the current
social climate. Instead they suggest there is guidance available for generating theories (Glasser
and Strauss, A.L., 1967, pp.10-11).

33 Jonathan Haddock, 10000112

14 WORKPLACE OBSERVATIONS

A qualitative researcher will aim to immerse themselves in the subject matter, contrasting
with quantitative methods where remaining independent is the focus (Lapan et al., 2012). It
is acknowledged the perspective of the research subject is important, i.e. how the individual
views the topic, and the researcher may also have an effect on what is observed. Observations
are targeted at specific groups that are relevant to the topic area (Glenn, 2010). By focussing
research in this way more meaningful results can be obtained.

Quantitative research aims to examine the cause and effect of phenomena and aim to remain
independent from the research so it can be quantified (Lapan et al., 2012, p.7). Research is
often aggregated to a set of numbers which can be analysed. This method of research may
be used to justify an existing concept making it similar to scientific research.

13.1 Research methods conclusion

Lapan et al. state “qualitative research, as contrasted with quantitative studies, places
more emphasis on the study of phenomena from the perspective of insiders.” (Lapan et al.,
2012). This project is particularly interested in the needs of a specific group, IT system
administrators, who would be the “insiders” in this context. The bulk of this project will be
researched using qualitative methods in order to develop an in-depth response to the research
questions.

Initially the research question to be answered is “do I'T administrators feel there is a benefit to
using mobile device apps to monitor the health of their network?”. This will be investigated
using a quantitative approach through the use of a survey (see section 15) in order to
determine the opinion of IT administrators and feed into the next research question.

“What features would be required for a mobile app, should it be deemed one was desirable?”
forms this project’s second research question. Consideration will be given to multiple areas
including security and implementation. To obtain more detailed views from those working in
the industry some professionals would be interviewed. Qualitative research is in use for this
section of the project.

14 Workplace observations

It has been observed by this author that some checks are left disabled when correct expected
values are not available to the configuring administrator. Of note are server performance

34 Jonathan Haddock, 10000112

15 SURVEY RESEARCH

checks which this author has seen left disabled. Performance checks are important for
flagging a range of issues and when left configured on one server were the only indication the
server had been compromised (the attacker was using the server to mine Bitcoins causing
processor utilisation to be excessive).

Similarly it has been noted checks are not always adjusted following configuration changes.
GFI Max Remote Management includes a “hacker check” designed to check the number
of audit failures in a server's security log. If the alert value is 1,000 prior to installing a
tool to limit brute force attacks the alert value should be decreased to avoid the protection
mechanism masking a successful attacker (since fewer attacks are possible it is necessary to
investigate attempts earlier than before).

15 Survey research

The survey was circulated to the author's work colleagues, other professional associates and
via the BCS (the chartered institute for IT) private LinkedIn group. Questions can be found in
Appendix A. Survey responses were collected anonymously using the SurveyMonkey platform
with the collection of IP addresses disabled (these could be used to trace responders as a
number of public IP addresses are known). There were no paper copies of the IT system
circulated.

It should be noted that a high representation of GFI Max Remote Management is likely due
to survey responses from this author's employer where this tool is the chosen solution. This
presents a form of bias in the results.

15.1 Reasoning behind questions

A reasonably broad spread of questions was included to provide an overview of IT monitoring
systems used by IT Professionals. Respondents were asked to indicate their job role as this
may influence their exposure to tools. A junior technician may not be provided access to the
monitoring system or its configuration.

It was important to determine if support tickets were automatically generated as this could
be a desired feature in a solution. False positives are also queried, in part as a follow on to
research by Tang et al. (2013), but also because it's possible current systems suffer an issue
of raising invalid support tickets.

35 Jonathan Haddock, 10000112

15 SURVEY RESEARCH

The survey ends with a question about notification methods with a view to determine what
suits professionals best. The result to this question should help direct this paper’s research.

15.2 Survey response analysis

Although 43 individuals responded to the survey not all of them responded to every question
(no questions were mandatory). Importantly the majority of questions were answered by
the majority of respondents. Most individuals identified themselves as being “in-house IT
support engineers/technicians” or as an “IT support engineer providing services to 3rd par-
ties” (71% combined) showing the majority of those answering the survey didn't have overall
management responsibility for the systems they worked with. This makes sense given most
organisations only have 1 IT manager but numerous supporting technicians. In addition to
IT support personnel the survey saw responses from system architects, database architects
and IT consultants.

Please indicate network monitoring systems with which you have experience

More people had used Nagios (54.55%) than other systems although it did not have majority.
Solarwinds Orion came second with 45.45% of respondents having used this. Interestingly,
GFI Max Remote Management, which prides itself on being quick to setup, had only been
encountered by a third of those responding (there were 33 responses to this question in
total). Figure 10 shows full details of responses to this question.

GFI Max Remote Management is primarily sold to organisations which provide IT services to
3rd parties. 33.33% of respondents had used this tool while 34.21% indicated they worked in
this area of the industry. Results for GFl Max Remote Management may have been enlarged
due to colleagues of the author responding to the survey; there was no limitation placed on
the number of responses per organisation. GFI's product is used extensively at the author's
workplace.

Nagios' result is interesting as this product is often criticised for its complicated configuration
(Issariyapat et al. (2012)Wu et al. (2013)), however, as a free solution it is possible more
organisations are prepared to implement it (trading product cost for the cost of man-hours).
There is a commercial branch of Nagios, Nagios Xl, and this survey didn't delineate be-
tween the two. Icinga appears to be less used than expected despite being a fork of Nagios
suggesting the “parent” product still had a strong following.

36 Jonathan Haddock, 10000112

15 SURVEY RESEARCH

Please indicate network monitoring
systems with which you have experience

Answered: 33 Skipped: 10

18

MNagios

Solarwinds
Orion

15

GFI Max Remote 11
Management

Splunk

w

Cacti

5

openView

Smokeping - 5
Tivoli -4
Icinga . 2

Ganglia I 1
1

ParMon

Big Brother

0% 20% 40% 60% B0% 100%

Figure 10: Monitoring systems by users familiar with them

Both Solarwinds Orion and GFl Max Remote Management are licensed per monitored node
and offer fairly easy configuration (this author has experience of both) so it is not surprising
these tools are found in the top 3.

In addition to the monitoring systems suggested by the survey it should be noted some users
had also used Spiceworks, ServerDensity, ArcSight, RM Event Master, Zabbix and internally
developed solutions.

37 Jonathan Haddock, 10000112

15 SURVEY RESEARCH

Costs to the business

Costs to the business appeared to vary, largely based on the business type. From the responses
it is clear a number of industries were represented including local government, educational
establishments and businesses. Organisations where projects are worked on locally using
locally installed tools indicated the cost of 1 hour's downtime would be minimal as employees
would continue working on their local copies. The same respondent indicated that if they
suffered an entire IT outage for a day, citing the building burning down as an example, their
company would lose at £30,000 per day (£1,000 per employee per day).

Other answers given by someone providing support services to 3rd parties indicated an hour's
downtime might cost their company tens of thousands of pounds whereas a day’s outage
would have both financial and reputation costs. Those working in education suggested
although the financial costs would be low there would be a negative impact on the organisation
as a whole and management may perceive this as a greater problem.

At the upper end of the scale, IT outages were predicted to cost in the order of millions of
pounds.

When the monitoring system detects a problem, is a support ticket automatically
raised in your helpdesk/management system?

72% of those responding to this question indicated that a ticket was automatically logged in
their systems for further investigation. Of this 72% the majority of systems logged the fault
immediately. Figure 11 shows the number of automatically raised tickets estimated to be
false positives. While the percentages of false positives generally seemed to be below 50% it
should be noted this particular statistic doesn't explicitly consider scale. Whereas 10% of 100
tickets being a false positive may not be considered a problem, 10% of 1,000,000 (100,000)
would involve much more work. Ultimately this question confirmed that false positives are
still an issue.

38 Jonathan Haddock, 10000112

15 SURVEY RESEARCH

What percentage of automatically generated tickets would

you estimate were false positives? (a false positive in this

case is a ticket which was created by a transient problem,
found to be already resolved)

Less than
25%

10

25 - 5%
Owver 50%
Over T5% Il
-:3

0%

Unsure

20%

40%

13

60% 80%

100%

Figure 11: Percentage of automatically generated tickets estimated to be false posi-

tives

Preferred notification methods

Perhaps of most relevance to this project was
the survey's final question about response
methods. Overall email was found to be the
preferred method of notification followed by
SMS text message (see notification prefer-
ences, right). This was also found to be the
case in interviews with IT professionals (see
section 16). One individual commented the
notification method would ultimately depend
on the type of problem being reported - a
paper jam would not require as urgent a re-
sponse as a disk failure.

1. Email

2. SMS text message

3. Notification via smart-phone app
4. Automated phone call

5. Notification via desktop software
6. Pager message

7. Wait for users to report the issue

Notification methods in ascending or-
der of preference

Arguably the first 4 options could all be routed to a mobile device / smart-phone and it would
be interesting to see responses in the event that a smart-phone app was able to interact with

the monitored environment.

39

Jonathan Haddock, 10000112

16 INTERVIEW RESPONSES

15.3 Conclusion

Responses to the survey demonstrated there is a reliance on IT systems by businesses and
there are costs, both financial and to reputation, associated with downtime of systems.
Although costs vary dependent on industry there was always a cost. A number of monitoring
systems were used although no monitoring system held a majority among those queried.
In hindsight, the question relating to monitoring systems should have been reworded to
determine which systems were actually used versus simply having been trialled.

The survey did not ask what features IT professionals would like available in future products.
It is possible to determine what features might be used based on the products IT professionals
stated they had experience of although there is no guarantee each feature of each product
is used, most likely organisations use a subset of features.

For some products, for example office productivity suites, it is clear commercial offerings
have the greater market share. This survey has shown this isn't necessarily the case in the
network monitoring domain. Further study would be required to determine if this is due to
companies placing low budget priority on tools of this nature, however, this is outside the
scope of this project.

“Notification via smart-phone app” was shown to be the third preference for administrators
receiving information on system health showing that a mobile app is desired but would not
be the primary resource for administrators as solutions stood today.

16 Interview responses

As part this project’s primary research two IT professionals were interviewed to obtain more
detail on their thoughts about monitoring systems. It was noted their answers were similar
indicating there is a need for these systems.

Monitoring systems clearly avoid excess costs to companies by helping to prevent downtime.
One interviewee, an administrator for a telecomms provider, explained that for each minute
of downtime costs vary based on the type of phone call that wasn't possible. For example,
downtime varies from a “few pence to in excess of £7 lost revenue every minute the system
in unavailable” (Cassidy, 2014). Cost of downtime can be expressed thus:

Cost = callincomeperminute X calls X downimeinytes

40 Jonathan Haddock, 10000112

16 INTERVIEW RESPONSES

There have been a maximum of 15 concurrent phone calls through that system. If each
phone call was to a premium rate number at £7 per minute, an outage of 5 minutes would
cost the company £525 in lost revenue, before loss of reputation and any fines are taken into
consideration. Another IT professional highlighted the cost caused by a loss of reputation for
a 3 day outage at their business and estimated this may cost the business £50,000 (Bramley,
2014).

In both cases it was determined the cost of the monitoring system was offset significantly by
the savings it provided. Of the respondents, one used Icinga, an open source solution, for
which the cost was only the hardware and electricity required to run the system. Another used
GFIl Max Remote Management which has a license cost per device. The decision to use GFlI
was partly a result of needing to know the software as it was sold to the company's customers
as a hosted service. There were also marketing benefits to saying “this is what we use”
(Bramley, 2014). Usability was mentioned by respondents along with the problem of Icinga’s
text configuration files. GFIl has a much more user-friendly interface which contributed to
its purchasing decision.

It was noted interviewees relied primarily on email alerts when a problem was detected
although SNMP alerts were also used. In the event an outage prevents email from being
sent, one organisation has configured their system to send SMS text messages. Although
overview dashboards exist these weren't the primary method for monitoring problems but
are used to obtain further information. It was felt a smart-phone app (or similar) would be
beneficial for showing urgent or critical alerts (accompanied by the device vibrating or making
a sound)(Bramley, 2014)(Knibbs, 2014). Another respondent suggested he was happy with
email and SMS unless an app were produced which provides additional controls, for example
triggering a reboot of a server, as this “would definitely help” (Cassidy, 2014).

16.1 Conclusion

Although smart-phones and tablets are increasingly becoming part of our lives, merely re-
ceiving alerts to them is not sufficient to cause their adoption for IT monitoring notifications
over more traditional methods. Adding additional capabilities to an app so it doesn't only
report events will assist in adoption of this medium.

It was also apparent that more than just Windows Server systems are in use so monitoring
systems need to provide solutions for multiple platforms.

41 Jonathan Haddock, 10000112

17 RESEARCH CONCLUSIONS

17 Research conclusions

“Do IT administrators feel there is a benefit to using mobile device apps to monitor the
health of their network?”

Survey and interview based research has shown there is a definite cost to the business in
terms of system downtime, verifying this widely held belief. Being able to restore a system
quickly, with the assistance of a monitoring system, clearly is in the business’ interest and
seemingly that of IT professionals.

Mobile device app notifications were rated the third notification preference according to the
survey (see section 15.2) although comments in interviews and conversation indicated an
app alone was not necessarily enough as alerts could already be received by email. The type
of problem should be considered by the app with an audible alert perhaps being generated
for high priority problems but not those of a non-critical nature (Knibbs, 2014). Importantly
the app needs to offer more than just another “dashboard view" with options to rectify the
problem being accessible from the app itself (Cassidy, 2014).

Overall it would appear administrators did see a benefit in using mobile device apps. Given
this notification method wasn't the top preference it was clear current offerings didn’t provide
administrators everything they required to prompt a shift in preference.

42 Jonathan Haddock, 10000112

Part IV

Solution

As highlighted by de Chaves, S.A. et al.(2013), and this author’s research, there is no
single solution to the problem of monitoring cloud computing. Differences in how services
are provisioned vary between suppliers, and services can be provided on demand, so tools
must support dynamic configuration. There are also security implications in monitoring
cloud services as firewalls must have additional rules created to permit monitoring probes.
Fortunately, firewalls can be configured to only permit probes from specific sources.

An additional challenge posed by the cloud is particularly relevant when a company's cloud
is provided by a vendor, rather than an in-house, private, cloud. Where a company doesn't
directly control the hypervisor which is running its VMs it is necessary to be able to remotely
issue scripted commands from the RESO Control Server. The reason for this is simple: if
an administrator has to logon to the cloud provider's web management console it would be
very difficult, if not impossible, to use RESO to take corrective action. Fortunately some
providers have addressed with issue. Microsoft Azure offers the “Microsoft Azure Powershell
Cmdlets” which include commands like Restart-AzureVM and Start-AzureVM (Washam,
2012). Support from other vendors varies.

It is also necessary to secure communications between the monitoring system and the admin-
istrator’s device. If communications can be intercepted it would be possible for an attacker
to determine if their attack was working and adjust their actions accordingly. Similarly, if
remote control was provided by the remote application it would be necessary to prevent
unauthorised access to this system.

Surveys conducted as part of this project showed administrators generally relied on email
for alerts and a mobile app was not highly sought after just for the purposes of showing
alerts. As noted during interviews, if the app permitted the administrator to take some form
of corrective action it would be considerably more useful (Cassidy, 2014) and as such this
project will look to produce a proof of concept solution to this end.

43 Jonathan Haddock, 10000112

18 SECURITY CONSIDERATIONS

18 Security considerations

As RESO gives the user a portal into a remote network there are a number of issues to
consider. This section looks to address those security concerns, explaining how the system
protects itself.

18.1 The device

Security of the device should be considered as through the device a user has the ability to
remotely control a company's infrastructure. Although RESO doesn't enforce it, devices
should be encrypted, a facility found in Android for some time. Devices should also be
protected with a password or PIN to prevent misuse although it is not reliably possible for a
third party app to determine if this is present. As a result RESO does not check because the
result cannot be trusted.

Mobile Device Management solutions such as Sophos MDM and Mobile Iron have the ability
to control device features from a central console, being able to prevent the use of bluetooth,
storage cards etc. RESO doesn’t implement these control features, however, it would work
on a device which had been secured in this fashion.

Overall, device security is the responsibility of the IT Administrator for the company.

18.2 The user

While the device may be protected by a password, PIN or facial recognition there is still a
possibility the user might unlock the device and hand it to another person. This would leave
the person holding the device in control of the network. For this reason it is necessary to also
authenticate the user before any instructions are sent from the device. A simple prompt for
the password when confirming the user’s desired action has been included to protect against
an unauthorised user using an authorised device (figure 12).

It should be noted the password should be approved/rejected at the control server's end,
rather than on the handset, in order to ensure the approval cannot be changed by the end
user.

44 Jonathan Haddock, 10000112

18 SECURITY CONSIDERATIONS

Are you sure you want to reboot this

server?

Figure 12: RESO: Screenshot of a confirmation prompt including the password field

18.3 Cloning the device and disgruntled employees

Without using particularly obscure tools it would be possible to move RESO from a trusted
device, such as the device assigned an administrator by his employer, to an untrusted one
(their personal device perhaps). In the event the app is copied to another device the company
immediately loses control of their deployment, their attack surface is widened and it's not
possible to enforce device policies through the third party solutions discussed above.

When the device is assumed to be trusted there is nothing preventing an unauthorised device
being used to control the system. In the event an employee “goes rogue” with their assigned,
or unauthorised, device there would be no mechanism to prevent their actions. To combat
this RESO uses a device identifier which is unique to each device. A technical explanation
of this identifier can be found in section 20.2.

Using an identifier allows devices to be assumed untrusted placing control of approved devices
back with the system administrator. To trust a device the system administrator must add
the device's identifier to the RESO Control Server's white-list. This method is not entirely
fool proof as an attacker with the correct encryption key could take all the relevant elements
of the device ID, encrypt it and transmit it to the control server. Further hardening of the
system would be possible through digitally signing the message (see section 18.5).

In the event an employee “goes rogue” the device identifier can be removed from the white-
list rendering the device useless from a remote control perspective. The employee's password
can also be removed from the system, preventing them from using another device.

45 Jonathan Haddock, 10000112

® N o g o W

[S I S

10
11

18 SECURITY CONSIDERATIONS

18.4 Remote control - arbitrary commands

A key factor is the security of the remote control mechanism as it is clear an organisation
would not want unauthorised users accessing the remote control mechanism (doing so would
present the potential to remotely attack the company, perhaps performing a Denial of Service
(DoS) attack. When dealing with user provided input it's important to consider the possibility
the user is not friendly and will try to subvert the system for malicious means. For example,
consider the insecure code in listing 1:

public static void processCommandinsecure(String command) {

ProcessBuilder systemCommand = new ProcessBuilder(”"bash”, "—c",
command) ;
try {
Process runSystemCommand = systemCommand.start();
} catch (1OException e) {
//Do nothing
}

Listing 1: Java: example insecure code to execute commands

This code essentially says “run BASH (a standard Linux shell) and instruct it to run command”
and is flawed because it doesn't allow for the dangerous nature of user-supplied input. A
“good” user would provide safe commands to be executed, for example ping 8.8.8.8,
however, a malicious user can use this access vector to run arbitrary commands (halt to
shut down the Linux system, rm -rf / in an attempt to erase files on the system etc.).
There is no sanitisation of input making the code inherently dangerous - user-input must not
be trusted.

In the control server application this threat is significantly reduced by only permitting certain
commands to be executed. Rather than producing a white-list of shell commands, this is
further obfuscated (not itself a security mechanism) by only accepting short codes. This is
further explained in section 19.3 but the code is included here:

public static void processCommand(String command) {
ProcessBuilder systemCommand = new ProcessBuilder("");
if (command.equals(”exit”")) {
System . exit (0);
} else if (command.equals(”rebootHH")) {
systemCommand = new ProcessBuilder (" bash”, "—c" k6 "
VBoxManage.—q._controlvm _.DNSQl_reset"”);
} else if (command.equals(”startHH")) {
systemCommand = new ProcessBuilder("bash”, "—c",k6 "
VBoxManage _—q._startvm .DNS01") ;

try {

46 Jonathan Haddock, 10000112

12
13
14
15
16

18 SECURITY CONSIDERATIONS

Process runSystemCommand = systemCommand. start ();
} catch (IOException e) {

//Do nothing
}

Listing 2: Java: “safely” processing user input to remotely execute commands

Should console input be required, allowing an administrator to specify specific commands,
then an alternative product should be used. SSH is a good example of a tested product that
can be used for this purpose.

18.5 Distributing command details

At present the RESO app and Control Server have the commands that can be executed hard
coded, i.e. there is no way to expand what can be done remotely without recompiling the
source. Long term this is not a viable solution and certainly does not scale so it is necessary
to develop a mechanism for distributing a set of command short codes per server. For the
purposes of this project such a mechanism has not been implemented, however, it is discussed
here.

How the remote command is securely passed to the control server is discussed in section
19.2.2 but should an attacker be able to intercept and modify the distribution of commands
sent from the control server to the app there would be security concerns. For example, if
an attacker changed every command to have the same or an invalid short code, or perhaps
removed the short codes altogether, the app would immediately be compromised. System
administrators would unknowingly be executing the wrong command against a server without
any reason to believe they were potentially harming the system. Consider this scenario:

1. Mobile device connects to a compromised wireless access point and contacts the RESO
Control Server

2. RESO Control Server sends mobile device the latest list of servers, their status and
commands

3. Attacker intercepts the transmission and adjusts all short codes, not necessarily knowing
what they mean, to a new value

4. Mobile device receives and processes the compromised list

47 Jonathan Haddock, 10000112

18 SECURITY CONSIDERATIONS

5. System administrator attempts to respond to an alert and remotely executes a different
command to the one he's expecting

Protecting against this attack, known as a modification attack, would require RESO and
the control server to digitally sign their transmissions making it immediately obvious if the
transmission has been tampered with. Signing requires support for asymmetric encryption
as a public/private key pair is required. Asymmetric encryption is explained in figure 9 and
signing in figure 13.

Signing Verification

f.ﬂﬁih:, . 101100110101

Hash

H

Data
Encypt hash Digitally signed data
uSing skprer's
private hey /
" .
111101101110
e Signature
iillllﬂllﬂlllﬂ|
Certificate Signature Dats D=crypt
\ usig sgnrers
TTemmmnees K—/ W pubic key
LY
Attach 2
to data

101100110101 101100110101

Hash Hash

If the hashes are equal, the signature isvalid,
Cigitally signed data

Figure 13: Signing messages with digital signatures (ACDX, 2008)

The altered communication would not have the correct hash and the app would discard the
information. Alternatively the aggressor could elect to replace the message entirely and sign
the message with his own private key. In this event the app would not have the aggressor's
public key resulting in the information being discarded as there would be no method to verify
the transmission.

48 Jonathan Haddock, 10000112

19 SYSTEM DESIGN

19 System design

Given administrators are not always physically connected to a network it is necessary for
them to be capable of performing their tasks when not constrained by network cables. The
prolific coverage of 3G capable mobile networks, and potentially WiFi hotspots, mean an
administrator is never truly cut off from their systems unless they lack a device with which to
connect. Increasingly there's a move to working from home so it is necessary to communicate
with the corporate LAN from an external location.

As a result, it was determined that an application for a mobile device, commonly referred
to as an app, would be produced as part of this project. The app will look to harness the
flexibility of the mobile device and provide administrators with a useful tool for not only
viewing their network’s health but also to initiate remedial action (for example rebooting a
server) where possible. It is expected remedial action would be easier on a virtual system
as the host would still be available to execute commands. As cloud computing heavily uses
virtual machines such a design is useful in the cloud computing space.

The overall operation of the app can be seen in figure 14 while the control server's operation
is shown in figure 16. Network deployment scenarios can be found in section 21.

49 Jonathan Haddock, 10000112

19 SYSTEM DESIGN

RESO App start

[Download health data]

|

[Vibrate] Servers Down?

yes

no

T

Display Overview }

Is a server

[Display overview]<7no selected for

t detail view?

yes

Y

[Show server details]

[User presses instruction button]

yes

Back pressed?
no

Confirmation
dialog: Are
you sure?

Remain on details screen
until user chooses
an instruction or
presses back button

yes

[Display toast message] Senclinstriiction
See additional flowchart

Figure 14: RESO App process diagram

50 Jonathan Haddock, 10000112

19 SYSTEM DESIGN

Send instruction (From main RESO flowchart)

S communication
with the control

Return to }
server enabled?

main flowchart

Concatenate:
instruction ; seconds since Unix
epoch ; device identifier ; password

A,

[Encrypt instruction]

A

Send instruction
to control server

Y

[Return to main flowchart J

Figure 15: RESO App: send reboot instruction process diagram

19 SYSTEM DESIGN

19.1 Mobile platforms

The three most used mobile device OS (in no particular order) are Google's Android, Mi-
crosoft’s Windows (Phone and RT) and Apple's iOS.

While Apple’s offering arguably gained popularity in the consumer space, and initially in
businesses, it is viewed by some in the IT industry as a primarily home-user grade system.
When business finances are considered the premium paid for an Apple device is also noticeable
making Apple devices controversial choices for businesses in the current financial environment.
To Apple's credit as iOS runs on restricted hardware it should be easier to produce a successful
app for these devices.

Microsoft's mobile platform has the weakest adoption and has been criticised by some for
having few apps in the Windows Marketplace. In this author’'s experience there are few
Windows Phone handsets in use by IT professionals making it a poor choice for this project.

Android is available on multiple devices with varying specifications. There are 2 different
ways to produce an app for Android. One option is to write in native C, using the Android
Native Development Kit (NDK), although this requires the app be compiled for the relevant
CPU. More commonly Android apps are written in a combination of Java and XML using
the Android Software Development Kit (SDK).

BlackBerry is also worth mentioning because although it once was the de-facto standard for
business mobile communication due to the encryption of its devices it has now fallen behind.
The company has posted numerous consecutive quarterly losses and is moving to focus on
its infrastructure services. This project has chosen to ignore BlackBerry due to its uncertain
future and decreasing adoption.

For this project the target platform will be Google's Android with the app written in Java
and XML. Not only does this choice offer a relatively fast turn around and steady learning
curve it's also the route recommended by Google who state, relating to native code:

Before downloading the NDK, you should understand that the NDK will not
benefit most apps. As a developer, you need to balance its benefits against its
drawbacks. Notably, using native code on Android generally does not result in a
noticeable performance improvement, but it always increases your app complex-
ity. In general, you should only use the NDK if it is essential to your app-never
because you simply prefer to program in C/C++.

(Google, 2014)

52 Jonathan Haddock, 10000112

19 SYSTEM DESIGN

Android is also open source for commercial use making it a low cost platform to develop for
as there are no license fees to pay.

19.2 Requirements

Overall, the system must:

Work on multiple hardware platforms

Allow secure communications between the mobile device and monitoring server

Permit an administrator to securely instigate corrective action

Use push notifications to reduce the impact on battery life

Be extensible to support multiple systems

Production of a monitoring system is outside the scope of this project, however, it would
be possible to extend Nagios / Icinga to process notifications using the new system. This
project focuses on producing a mobile app to securely communicate with a monitoring system,
interacting with it to remotely trigger fixes.

19.2.1 Hardware support

Unlike Apple's iOS which only operates on a limited set of hardware, Android operates on a
significantly wider set of devices. Hardware specifications vary widely between manufacturers
and devices so there is a challenge in ensuring the mobile app operates the same across a
multitude of devices. Fortunately for developers much of this is already done through use
of the Android SDK. Key visual differences will occur where screen resolutions and themes
vary.

It is a requirement of this project that the app is usable on a variety of Android devices,
regardless of resolution.

53 Jonathan Haddock, 10000112

19 SYSTEM DESIGN

19.2.2 Secure communications

In order for two people to communicate it is often necessary to talk in rooms where others
are present. As such it would be unwise to discuss confidential matters plainly, perhaps
speaking in a made up language. When two computers need to communicate the same is
true - doing so will often be overheard. For example, sending data across the Internet does
not guarantee the traffic won't be intercepted and analysed. To be secure it's important the
medium itself (e.g. the Internet) doesn't need to be secure; this reduces costs and increases
the ability to communicate. Moreover, just because an environment is secure today it is not
valid to assume it will always be so; a wire tap could be installed at any point (or in the case
of switched networks a mirror port could be created to receive a second copy of the traffic).

Combating this problem requires the information to be made unreadable by third parties.
This project will encrypt the data using symmetric encryption to ensure the data can only be
read by the correct third party (i.e. those with the encryption key). Symmetric encryption
was chosen as it is less processor intensive, thus less draining on the mobile device's battery.
As mentioned, it is critically important to protect the encryption key, ensuring it isn't made
available to non-legitimate third parties.

Despite the data exchange being encrypted it would be possible to capture the data and
replay it. While the interceptor could not understand the data they were retransmitting the
server would repeat any processes on the data, potentially leading to a denial of service. If
the replayed instruction was to reboot a server the server would restart again. To combat
this more than just the instruction will be transmitted:

e Timestamp
The control server will compare the timestamp of received instructions with that in
the encrypted data. If there is more than 5 seconds difference the instruction will be
ignored. This reduces the duration of a replay attack to 5 seconds.

e Instruction
Rather than transmitting the full instruction (e.g. service apache2 restart) an
instruction ID will be sent, reducing bandwidth requirements while also preventing data
leakage in the event the packet is decrypted.

e Device identifier
This enables the control server to determine if a trusted device is being used. This is
discussed more in section 20.2

e User password
The user is prompted to provide their password prior to any actions being taken, this
is added to the message sent to the control server.

54 Jonathan Haddock, 10000112

19 SYSTEM DESIGN

Use of a timestamp to help secure communications is not a new concept. Timestamps are
used with Kerberos, an authentication mechanism used in a number of operating systems
including Microsoft Windows (Russinovich and Solomon, D.A., 2009, p.517). Kerberos is
defined in RFC 4120 (Neuman et al., 2005) and MIT advise that clocks should be synchronised
within 5 minutes of each other to “prevent intruders from resetting their system clocks in
order to continue to use expired tickets” (MIT, 2007). RESO takes a similar approach in
order to prevent a replay attack (its equivalent of using an expired ticket).

In the future it would be possible to convert the system to use asymmetric encryption.

19.2.3 Instigate corrective action

For the purposes of this proof of concept the only corrective actions offered to the adminis-
trator will be to start or reboot the server. If the solution were to be extended it would be
necessary to offer additional options as it is not always desirable to reboot an entire server.
As examples, additional corrective actions which could be added:

Stop or start a service

Open SSH session (for greater control)

Open RDP session (for greater control)

Allocate additional resources to a VM

19.2.4 Push notifications

With traditional computing, where a device is connected to a continuous power supply, it is
not unusual for programs to poll on schedule. An example of this is an email client set to
check for email every 5 minutes. The drawback to this is that a check is made whether any
new data is available or not although this isn't usually a concern for a permanently powered
device.

Mobile devices have a battery life which requires consideration. Regularly polling a remote
host for information reduces battery life, especially as most of the time there will be no
change. To combat this, push notifications are available which send instructions to the
device on an as-needed basis. Push notifications are sent to the device when a change has
occurred and can prompt the device or user to perform a sync to obtain the latest information.

55 Jonathan Haddock, 10000112

19 SYSTEM DESIGN

For Android the most common method for a push notification is via GCM which will be used
in this project.

19.2.5 Interoperability

Research (section 15) by this author has shown there are numerous monitoring systems in
use so this system would need to provide a method for third party systems to exchange data.
For this purpose XML is used and the third party system would need to output XML based
on the specification shown in appendix C.

As RESO is not monitoring the system, only using the output of another, there is no need
to send data back to the network monitoring system.

19.3 Control Server

The RESO control server will take instructions sent by the app and process them accordingly.
This reduces the need to forward management ports for monitored hosts (e.g. virtualisation
hypervisors) to the Internet (see deployment scenarios in section 21).

As mentioned, the control server is never sent the full command to be executed so the “short
code” it is sent must match a command which is already known. This increases the security
of the system by making it more difficult to run an arbitrary command (for example to begin
an attack on a remote system or to create a local user). A process diagram for the control
server is shown in figure 16.

For the purposes of this project a proof-of-concept control server was developed in Java
which has one “short code” built in (to reboot a certain VM in the test lab). The XML
health data file was distributed via the Apache HTTP web server, rather than by the control
server. In the lab, this control server would need to have been published to the Internet as
shown in figure 21.

56 Jonathan Haddock, 10000112

19 SYSTEM DESIGN

RESO Control Server start

Y

[Listen for network connections]

|

[Keep listening]‘—no Data received?

yes

[Decrypt received data]

lls Bl e Q. BAD DATA!!
Biin 5 Stop processing

seconds?

yes

s there a valid no
device ID and
password?

yes

Is there a
matching
instruction?

no

yes

—[Execute Command]

Figure 16: RESO Control Server process diagram

57 Jonathan Haddock, 10000112

20 SOLUTION DEVELOPMENT

20 Solution development

As discussed in section 12, the IID methodology was employed for this project. Individual
parts were developed and tested before integrating with the remainder of the project. In
some cases this involved creating an entirely separate code base to ensure code worked as
expected. Source code was managed using the Subversion Version Control System (VCS)
allowing code revisions to be tracked and reverted if necessary.

In addition to developing parts separately there were a number of iterations of each layout.
The initial design for the server list screen can be seen in figure 17 but it was deemed this
didn't provide an intuitive interface: it was not apparent that touching the status “square”
would open further information on the server. The final result can be seen in figure 24.

Server 1
192.168.0.1

Webserver

192.168.0.2

Figure 17: RESO: Initial design for the server list

Development was conducted using the JetBrains IntelliJ integrated development environment
which provided syntax highlighting, integration with the Android SDK and, most importantly,
integration with Android Virtual Devices. This tool allowed code to be tested in both an
emulator, which was used for most of the development, and to be transferred to mobile
devices for “real” testing. More details on the lab used for development can be found in
section 22.

g W N =

O ® N U R W N =

10
11
12
13
14
15
16
17
18
19
20
21

20 SOLUTION DEVELOPMENT

20.1 Generating the Ul

Each “screen” in Android is known as an activity and must be defined in AndroidManifest.xml.

Activities comprise of a Java class and an XML layout file which provides what the user sees
and more complex or dynamic layouts can be generated using Java rather than a specific
XML file. Moving between activities is accomplished by tapping Ul elements (for example
a button) or using one of the Android built in “buttons” (sometimes physical, sometimes
on-screen) such as "back”. An activity's layout file can be defined within its Java class by
overriding the onCreate method as shown in listing 3.

©@Override

public void onCreate(Bundle savedinstanceState) {
super.onCreate(savedInstanceState);
setContentView (R.layout.about);

}

Listing 3: Defining an activity’s layout

Layout files must be named filename.xml and the name must be lower case.

<?xml version="1.0" encoding="utf-8"7>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android”
android:layout_width="match_parent”
android:layout_height="match_parent">
<TextView

android:id="0@+id /labellcon”

android:layout_width="wrap_content”

android:layout_height="wrap_content”

android:text="Application.icon.from_.\nhttp://openclipart.org/
detail /36691 /tango—network—offline —by—warszawianka”

/>

<TextView

android:id="0+id /labelAcknowledgments”

android:layout_width="wrap_content”

android:layout_height="wrap_content”

android:layout_centerHorizontal="true"

android:layout_below="@Qid/labellcon”

android:layout_marginTop="10dp"

android:text="@string/labelAcknowledgments”

android:textSize="8pt"

/>

</RelativeLayout>

Listing 4: XML to generate the About activity layout

Activity layouts can be constructed separately from program code making it convenient to
debug without the complication of program logic. Alternatively, dynamic layouts can be

59 Jonathan Haddock, 10000112

20 SOLUTION DEVELOPMENT

constructed using Java - this technique is used to display the server health overview activity
by parsing the XML.

20.2 Device identifier

Device identifiers are used as a rudimentary way to authenticate the device - the device
identifier is sent along with the instruction to the control server and unless the identifier is
on the white list no further processing is done on the instruction. If the device identifier was
solely specified by a human, all an attacker, perhaps a disgruntled employee, would need to
do is obtain a colleague's identifier and set their device's identifier accordingly. To combat
this the identifier consists of three parts:

1. Device IMEI
If the mobile device is a phone on the GSM network it should have an International
Mobile Equipment Identity (IMEI) which is unique to it. This cannot be changed by
the user.

2. Device hardware serial
The device's serial number is extracted if possible and used in the identifier

3. User specified identifier
This is an optional component, particularly used for devices which don’t have an IMEI
or hardware serial (for example Android emulators used in testing and development or
tablet computers with no mobile network connectivity)

Each of these strings is concatenated, if they exist, in the order above, to generate the
device's identifier which should be unique (certainly if an IMEI is used it will be). This is a
achieved through the code in listing 5.

As can be seen in line 12 of listing 5 a shared preference is used to store the user specified
device identifier. This is set on the advanced preferences configuration page as shown in
figure 18.

60 Jonathan Haddock, 10000112

O ® N o Ul W

10
11
12

13

14

15

16
17

20 SOLUTION DEVELOPMENT

public String deviceldentifier () {

String deviceld = "FAKE.ID";

TelephonyManager telephonyManager = (TelephonyManager)
getSystemService (Context. TELEPHONY_SERVICE) ;

if (!telephonyManager.getDeviceld().isEmpty()) {
deviceld = telephonyManager.getDeviceld ();

¥

if (!Build.SERIAL.isEmpty()) {
deviceld = deviceld + Build.SERIAL;

}

SharedPreferences sharedPrefUserDeviceld = getSharedPreferences(”
deviceldFromUser”, 0);

if (!sharedPrefUserDeviceld.getString("deviceldFromUser”, "").
isEmpty ()) {
deviceld = deviceld + sharedPrefUserDeviceld. getString(”

deviceldFromUser” , "");
}

return deviceld;

Listing 5: Java used to determine the device’s identifier

02 - UK & =l i@ 12:47

Advanced Prefs

User specified device ID:

JonathanPhone

'You can optionally provide a device ID. Care
should be taken to ensure this is unique. Use
with caution.

Device IMEI:
359290041745495
Device Serial:

TA5740GQTA

Save preferences

oS OO 9=

Figure 18: RESO: Advanced preferences

61

Jonathan Haddock, 10000112

20 SOLUTION DEVELOPMENT

20.3 Adding encryption

Once communication between the app and control server had been established in plain text
it was necessary to introduce encryption to meet security requirements. Initial research sug-
gested it was necessary to use the SpongyCastle library, however, after further investigation
it became apparent Java's built-in cryptography routines could be used instead. AES encryp-
tion was chosen as the encryption standard and was tested in a separate Java (not Android)
project. It should be noted this code was taken from contributions by Fernandes (username
bricef) on GitHub (Fernandes, 2014).

Once the encrypt/decrypt code was confirmed as workingAES . java was then created within
the Android project and an immediate problem was noted:

public static byte[] encrypt(String plainText, String encryptionKey)
throws Exception {

Cipher cipher = Cipher.getlnstance ("AES/CBC/NoPadding”, "SunJCE");

SecretKeySpec key = new SecretKeySpec(encryptionKey.getBytes(”"UTF
~8"), "AES");

cipher.init(Cipher .ENCRYPT_MODE, key, new IvParameterSpec(IV.
getBytes ("UTF-8")));

return cipher.doFinal(plainText.getBytes("UTF-8"));

Listing 6: Android: Calling a missing encryption provider

Whereas the code in listing 6 worked correctly in a Java project it was not compatible with the
encryption setup within the Android implementation, instead throwing the following error:

java.security.NoSuchProviderException: Provider not available: SunJCE

It is not necessary to specify an encryption provider for the method getInstance so this
was removed resulting in listing 7. This code is the same in both the Android app and the
RESO Control Server running in the lab and works correctly.

62 Jonathan Haddock, 10000112

=W N e

20 SOLUTION DEVELOPMENT

public static byte[] encrypt(String plainText, String encryptionKey)
throws Exception {

Cipher cipher = Cipher.getlnstance ("AES/CBC/PKCS5Padding”);

SecretKeySpec key = new SecretKeySpec(encryptionKey.getBytes(”"UTF
—8"), "AES");

cipher.init(Cipher .ENCRYPT_.MODE, key, new IvParameterSpec(IV.
getBytes ("UTF-8")));

return cipher.doFinal(plainText.getBytes("UTF-8"));

Listing 7: Android: Fixed encryption code

204 GCM

The GCM component of RESO was initially built in a test app in order to test it without the
interference of additional code. To use GCM it's necessary to stipulate additional permissions
are required within the AndroidManifest.xml file as shown in listing 8. This listing shows
a working AndroidManifest.xml excerpt, however, when first implemented, following an
online tutorial, an error was introduced while re-factoring the code which broke the required
Google permission. Permissions such as com.google.android.c2dm. permission.RECEIVE
and com. jonathanhaddock.gcmtest.permission.C2D_MESSAGE must be represented ex-
actly as written else the GCM system will not work. By developing this component outside
of the main RESO project it was possible to debug the issue much easier as there was less
code to review.

<uses—permission android:name="android.permission.INTERNET" />
<uses—permission android:name="android.permission.GET_ACCOUNTS" />
<uses—permission android:name="android.permission.WAKELOCK" />
<uses—permission android:name="com. google.android.c2dm. permission.RECEIVE"

/>

<permission android:name="com.jonathanhaddock.gcmtest.permission.
C2D_MESSAGE” android:protectionLevel="signature” />

<uses—permission android:name="com.jonathanhaddock.gcmtest. permission.
C2D_MESSAGE" />

Listing 8: Android: Permissions in AndroidManifest.xml

Android uses a permissions system that dictates what an app can do and these are defined
in the AndroidManifest.xml. In listing 8 there are a numbers of permissions defined (note
these are only an excerpt of what RESO requires):

63 Jonathan Haddock, 10000112

20 SOLUTION DEVELOPMENT

e INTERNET - Allows access to the Internet, required so the device can receive the push

notification

e GET_ACCOUNTS - to use GCM it's necessary to have a Google account, this permission

allows the list of accounts to be queried

e WAKE LOCK - Allows the app to prevent device CPU from sleeping, this is optional

e com.google.android.c2dm.permission.RECEIVE - permits the app to act as a

broadcast receiver

e com. jonathanhaddock.gcmtest.permission.C2D_MESSAGE - prevents other apps

registering to receive RESO's push notifications

Once the code was confirmed as working, and the handset could receive a push notification
from the GCM servers, the code was moved into the main RESO project. Initial testing
was conducted within an Android emulator but this was unsuccessful as the emulator didn’t
have a Google account added (and couldn’t be configured to use one). Further testing was

conducted on the developer's mobile phone instead.

How GCM works with RESO is shown in figure 19.

1) RESO app registers with
Google Cloud Messaging
servers (once)

-))) @

2) Network monitoring server
outputs overview data which is
processed by RESO Control Server

o &

3) RCS sends notification to
GCM servers

06

4) GCM servers send push
notification to handsets

—
-
4
—

*5) RESO app on phone shows
notification, prompting the user to
open the app

6) RESO app displays up to date data

-)))'

Figure 19: Google Cloud Messaging and RESO

64

Jonathan Haddock, 10000112

21 DEPLOYMENT AND USAGE SCENARIOS

21 Deployment and usage scenarios

RESO is designed to be usable by any system administrator but particularly those that are on
the move or have to support multiple, geographically disparate, offices. If an administrator
receives a phone call while en route explaining that a primary server had gone down, prior to
RESO it would be necessary to find sufficient connectivity in order to link to the corporate
network using a laptop. Instead it's now possible to simply tap a button from the mobile
handset to boot a backup server reducing the company’s down time significantly. Similarly
an administrator may be pulled to 2 different incidents and clearly only 1 can be attended in
person. RESO allows the administrator to begin corrective action ahead of their usual arrival
time and potentially while still on the move (and hours away) or at a remote location.

Although the solution presented here is a powerful one there are occasions where it shouldn't
be used. These cases are not necessarily a reflection on the solution itself but can come
down to the basic principle of security - if you want something secure don't connect it to a
network. For example, RESO should not be used to help monitor and track highly sensitive
systems (computers controlling nuclear reactors) as this would immediately provide a route
to the system from the Internet. Even if RESO was 100% secure, which no software can be,

common sense would dictate that putting the nuclear reactor controls on the Internet would
be a bad idea.

RESO is dependent on connectivity from either mobile or wireless networks so clearly cannot
be used in areas where neither is available.

There are 2 options for deploying the RESO Control Server - either in a De-Militarised Zone
(DMZ) or by forwarding the control server's ports directly to the Internet. As figure 20
shows, by placing the control server in a DMZ the firewall is able to tightly control the traffic
from the control server. While this may appear an additional complication at first this design
prevents the control server being successfully used as a pivot point to attack other areas of
the network. Should the control server be compromised, the attacker gaining full control,
it would be used to launch further attacks against the company's infrastructure. A large
number of these attacks will fail as the firewall will not be configured to permit DMZ servers
open access to the trusted LAN.

In smaller networks there is often not a DMZ so the server would be published directly to
the Internet per figure 21. As the server is behind the firewall it can be used to attack other
assets on the trusted LAN . With more networks moving to use virtualisation this potentially
means an entire network can be brought down by targeting a handful of hypervisors.

Due to the high cost of server OS licenses companies may be hesitant to dedicate a server

65 Jonathan Haddock, 10000112

21 DEPLOYMENT AND USAGE SCENARIOS

internet

Zone based

. RESO Control
Firewall

Server

—(=¢

NS

Firewall tightly controls traffic from RESO Control
server to Trusted LAN

Virtualisation

host <
j Trusted LAN §
(6]
X
NS Network
health
server

. Traffic between monitored hosts and the Network
e Traffic from RESO Control server to VM host Health server (ICMP, NRPE etc.)

Data sent between Network Health and RESO Traffic from public Internet to RESO Control server
Control server (health data and encrypted remedial instructions)

Figure 20: RESO Control Server deployed in a DMZ

to use as a RESO Control Server. In the “forwarded port” configuration the software on the
server, not just the RESO Control application, is just as vulnerable as in the DMZ, but the
server's placement makes the scenario significantly more dangerous.

66 Jonathan Haddock, 10000112

21 DEPLOYMENT AND USAGE SCENARIOS

o~
4)

g

g internet)J

Zone based
Firewall

Ports forwarded directly to the
Internet.

No firewalled control between this
host and remainder of the network.

Virtualisation

host \ g
Trusted LAN @ §
0
X
NS Network
Health & RESO Control
server

Traffic between monitored hosts and the Network

== Traffic from RESO Control server to VM host Health server (ICMP, NRPE etc.)

Traffic from public Internet to RESO Control server
(health data and encrypted remedial instructions)

Figure 21: RESO Control Server deployed with ports forwarded directly to the Inter-
net

67 Jonathan Haddock, 10000112

22 TESTING

Part V

Testing and validation

22 Testing

For testing, a lab was constructed comprising of the following parts:

Network infrastructure (switch and wireless access point)

Server running a hypervisor, the RESO control server and an emulated Android handset

Handset running an “approved” RESO instance

Handset running an unauthorised RESO instance

The XML file, parsed by the RESO app to show server states, was hosted on an external
web server although this is not shown in figure 22 which shows the lab network.

For these tests the RESO control server was never exposed to the Internet, however, as
a simple port forwarding would permit access from 3G or 4G networks there should be no
difference accessing the control server over a wireless LAN to accessing it via a mobile
provider’s network.

Testing was largely conducted by a process of trial and error. Each time a change (or related
collection of changes) was made, for example adding an additional layout element, the app
was recompiled and tested on emulators and physical handsets. Sometimes subsequent
changes required modification of functionality that was considered working. When linking
with the RESO Control Server, transmissions between it and the app were initially in plain
text so the system could be shown as working. For more details about the development of
this interaction see section 20.3.

68 Jonathan Haddock, 10000112

22 TESTING

Approved RESO

i Unauth
% |
M ~
\(': }j e

Wireless

ised RESO

Emulated handset
[RESO

Hypervisor,
RESO Control Server

Figure 22: Testing lab network diagram

22.1 Hardware platforms

While testing in development 2 physical devices were used: the Asus Nexus 7 (2012) tablet
and the HTC One V phone. Hardware specifications for these can be found in table 1.

Nexus 7 (tablet) HTC One V (phone)
Screen resolution | 1280x800 800x480
CPU NVIDIA® Tegra3™ Quad-Core, | Qualcomm Snapdragon
1.2 GHz MSMS8255, Single Core 1 GHz
processor
Audio? Yes Yes
Vibrate circuit? | No Yes
Connectivity WiFi WiFi, 3G, GPRS, GSM

Table 1: Android test hardware specifications

The app’s design took these differences into consideration. For example, if a server is down
a sound is played and, where a vibrate circuit is present the device will vibrate. The vibrate
circuit is not solely relied upon as it is not a required standard for Android devices.

Different screen resolutions have been catered for by use of scrolling layouts where required,
an example can be found in figure 23 which shows the app's preferences screen. On the
tablet the whole form is displayed whereas on the phone it is necessary to scroll to even see
the full “save preferences” button. Despite this difference the app is still usable on each

device.

69

Jonathan Haddock, 10000112

22 TESTING

It should be noticed that differences in visual style are due to the themes installed on each
device.

|
F

Preferences

o
e

ttp:ffjonadocs org.ubksServerStatusy

Control Server address

192, 168.0,67

Control Server address

192, 168.0.67

Save preferences

Above: RESO app
on HTC One V
(phone)

Left: RESO app on
Nexus 7 (tablet)

Figure 23: Screenshots showing RESO’s preferences screen on different devices, part
way through development

Figure 24 shows another difference caused by screen resolution - the app’'s menu covers key
areas of the screen. If the menu were to be permanently open this would be considered a

major problem in terms of usability, however, the menu is triggered by the user in order to
access further settings within the app.

As the app is usable on a number of devices with different hardware specifications this
requirement has been met.

70 Jonathan Haddock, 10000112

22 TESTING

e Serverlist

Refresh Server list Refresh Server list

Preferences S S——

Abaout

Abaout

Above: RESO app
on HTC One V
(phone)

Left: RESO app on
Nexus 7 (tablet)

Figure 24: Screenshots showing RESO’s server list with an open menu on different
devices

22.2 Encryption

It is not possible to disable encryption within the app as this would be inherently insecure,
however, for the purposes of testing a build was produced without encryption enabled. Using
Wireshark, a network packet protocol analyser, traffic was captured between the mobile
device and the RESO Control Server. Figure 25 shows this captured traffic - text in red
(on the right) is the message sent from the mobile app to the control server which is clearly
readable as rebootHH; 1412280045 ;359290051743494TA4750GQTEJonathanPhone ; This
is a password : the instruction followed by a Unix timestamp, the device identifier and a
password (in a final product a password should not be sent in plain text, instead a salted hash

71 Jonathan Haddock, 10000112

22 TESTING

should be used. For this proof of concept the password is being passed as plain text). As
this information is in plain text it would be possible to tamper with the timestamp, setting
it to a later value, and replay the packet.

Ho. Time Source Destination Protocal Lengtl Info Follow TCP Stream (tcp.stream eq 0) =4 kB e
1 8.000009999 192.168.1.163 192.168.1.159 TCP 74 60623-1234 [SYN]| o\ o oo
2 ©.000053000 102.168.1.150 1902.168.1.163 TCP 74 1234-68623 [SYN
3 0.001894000 192.168.1.163 192.168.1.159 TCP 66 60623+1234 [ACK] RESO Control Server: Connected
4 0.002165000 102.168.1.150 102.168.1.163 TCP 97 1234-60623 [PSH, rebootHH; 1412280045; 359290051743494TA4750G0TEJonathanPhone; This 1s
5 0.003411000 192.168.1.163 192.168.1.159 TCP 66 60623-1234 [Ack]| P Pssword
6 ©.047511000 192.168.1.163 192.168.1.159 TCP 144 60623-1234 [PSH, |
7 0.047588000 192.168.1.159 192.168.1.163 TCP 66 1234-60623 [ACK]
] 63 1 34 [RST,
1. [RsT]

Figure 25: Captured unencrypted traffic between the mobile app and the RESO Con-
trol Server

Figure 26 shows the same message (albeit with a different timestamp) sent after encryption.
As the message is not understandable (it appears as a set of numbers) without decryption
it would be highly unlikely an attacker could successfully modify the encrypted message in
order to attack the system.

No. Source Destination Protocol Info sy =) 8 X
15 192.168.1.163 192.168.1.159 TCP 35396-1234 [SYN] Stream Content
16 192.168.1.159 192.168.1.163 TCP 1234+35396 [SYN
17 192.168.1.163 192.168.1.159 TCP 353061234 [ACK] F[‘izu ngtr‘;l ??r"egé coggecﬁg Y R T PR S T gy
18 192.168.1.159 192.168.1.163 TCP 1234-35396 [PSH, 712;‘"782’3' "103. 1333 ‘e, 101, 74, 194"7115”6@"7;1@"8: 82,
19 192.168.1.163 192.168.1.159 TCP 35396-1234 [ACK]||lss, ‘71, 6, -124, 88, -63, .75, -101, 15, -21, -41, 187, -63, 9,
20 192.168.1.163 192.168.1.159 TCP 35306-1234 [PSH, 1e8, 36, 59, 99, 112, -19, 93, -86, -22, 186, -77, 180, -13, 9@,
21 192.168.1.159 192.168.1.163 TCP 1234-35396 [ACK] | |-110, -44, -9, 12, -92, -28, -34, -102, 71, 189, 53, 68, -125,
1 1 35306-1234 | 62, -58, 11e, 38, -182, -128, 85, -64, 38, 51, 38]
1 1 35396-1234 [|

Figure 26: Traffic between the mobile app and the RESO Control Server, following
encryption

22.3 Replay attack defence

The term “replay attack” describes malicious activity where data is captured and later re-
sent (or replayed) to the original destination. Doing so would cause a repeat of the earlier
action. To test the control server defended against such an attack a reboot instruction was
captured and resent and the control server correctly identified the message was stale, halting
any further processing.

Socket has been made
Waiting for connections...

Plaintext is: rebootHH;1412280277;359290051743494TA4750GQTEJonathanPhone;password

ALERT: Message was stale
Output from the control server on receiving replayed data

72 Jonathan Haddock, 10000112

22 TESTING

22.4 Push notifications

As there is no network monitoring system to provide data to the RESO Control Server the
lab setup uses a script to send a push notification to RESO. This was received by the handset
as shown in figure 27 which shows the “toast” (pop up message) and status bar notification.
Both message types are used because the “toast” message is temporary whereas a status bar
notification persists until cleared by the user. For clarity the screenshot has been annotated.

ALERT - SERVERS DOWN

Motification in
status bar

YT
Jga

SETVErS are down
e Please check RESOD - a server 15 offline . =

Figure 27: RESO: Push notification received by the phone

73

Jonathan Haddock, 10000112

22 TESTING

22.5 Protecting against unauthorised devices

When an unauthorised device attempts to send a send an instruction the control server rejects
the message:

Socket has been made

Waiting for connections...

Plaintext is: startHH;1412281053;353115054807879HT25GTV04188;password

Instruction received from an unauthorised device identified as 3563115054807879HT25GTV04188
Output from the control server on receiving message from an
unauthorised device

22.6 Protecting against unauthorised users

In the event an employee must be locked out of the system his password is disabled. Trying
to use that password results in the server ignoring the request:

Socket has been made
Waiting for connections...
Plaintext is: startHH;1412281132;359290051743494TA4750GQTEJonathanPhone;baduser?

Instruction received from an authorised device (359290051743494TA4750GQTEJonathanPhone)
but invalid password specified

Output from the control server on receiving an invalid password

74 Jonathan Haddock, 10000112

24 REFLECTION ON ACHIEVEMENTS RELATED TO AIMS AND
OBJECTIVES

Part VI

Conclusions and evaluation

23 Key contributions

This project has designed, and partially implemented, a complete solution for remotely rem-
edying a number of problems without the need for a traditional (laptop / computer based)
network connection. Despite this solution needing further development it does prove such
an implementation is possible.

A comparison of existing solutions has also been produced and can be used for further research
by other projects. Although only a minor contribution it may be of benefit to those who
follow.

24 Reflection on achievements related to aims and ob-
jectives

As has been shown in this report, the current state of RESO meets the requirements:

Work on multiple hardware platforms

Allow secure communications between the mobile device and monitoring server

Permit an administrator to securely instigate corrective action

Use push notifications to reduce the impact on battery life

Be extensible to support multiple systems

The initial specification for secure communication only contained 2 elements, an instruction
and timestamp, however, as the solution was developed it was noted how insecure this would
be. Instead the specification has been expanded to also include a device identifier and user
password allowing administrators to maintain control of their infrastructure.

75 Jonathan Haddock, 10000112

25 COMPARISON TO THE RESEARCH FIELD

It should be noted that further work is required to make the project commercially viable.

Research questions answered by this project were:

1. If an IT Manager can monitor a system remotely, can it also be influenced remotely?

2. Do IT administrators feel there is a benefit to using mobile device apps to monitor the
health of their network?

3. What features would be required for a mobile app, should it be deemed one was
desirable?

This research has answered these questions and shown it is possible to control a system
remotely in a secure fashion. By using encryption, timestamps and obfuscation this project
has successfully enabled an administrator control a system with a low risk of problems.
Research conducted by interview has shown a mobile app is considered beneficial so long as
it contains a mechanism for initiating remedial action.

25 Comparison to the research field

Various projects have shown it is not uncommon to extend a third-party monitoring system,
for example Nagios, to provide additional functionality (lIssariyapat et al., 2012) (Katsaros
et al., 2011) and this project is in the same category. While RESO doesn't extend a specific
monitoring system it requires an underlying system in order to function, however, interfacing
with additional systems was outside the scope of this project. RESO was the only project
found to provide a mechanism for remote control.

Buevich et al. have used remote systems to control electricity grids in rural areas (Buevich
et al., 2014) and, despite not being an obvious comparison to this work, there are parallels.
For example, Buevich et al. acknowledge the need for security in the system so encrypt
exchanges between remote nodes and the control system. In their work a house's electrical
supply is adjusted by a networked smart meter - clearly if the system can be tampered with
their could be damaging consequences.

Using Android devices for remote control appears to be a growing trend with devices used
to control CNC milling machines on the LAN (Truong and Vu, D-L., 2012) and for home
automation (Gurek et al., 2013). In work by Gurek et al. it is noted their design elected

76 Jonathan Haddock, 10000112

26 GENERAL STRENGTHS AND WEAKNESSES

to use Android's SharedPreferences storage to persistently store user settings between
program executions, as does this author's work. Concerningly, neither of these authors
mention encryption or security in their papers which could lead to abuse of the systems if
they are not securely implemented.

26 General strengths and weaknesses

RESO has advanced the remote network control field by allowing specific tasks to be con-
ducted at a single button press on a mobile device. Previous solutions required a network
connection and an interactive shell or web based control panel.

A weakness of RESO is that every version of the app uses the same encryption key (clearly
this would need to be customisable should it become a commercial product). With each
handset within a company having the same encryption key it would not be difficult to decrypt
communications after an employee went rogue and adjust them accordingly. This could be
improved by having individual keys and implementing an asymmetric mechanism.

The control server, as it stands, is another weakness as it requires significant improvement
to become a viable product. This is discussed in more detail in section 18.5.

There are two key points of failure within this solution - the control server and the health
information distribution. For RESO to be effective it must be able to download network
health data in the form of an XML document. In the event this document is not available,
for example due to a DoS attack, the app would be rendered useless. Alternatively, DNS
poisoning could be used to direct the administrator's device to another server, providing them
a different health file entirely. Depending on what information was present in the “rogue”
XML file the administrator could be caused to reboot a system incorrectly which would lead
to a DoS of the company’s systems. Distribution of the health data via an encrypted or
signed mechanism could help mitigate this risk so long as RESO alerted the administrator
should an incorrectly signed document be received (and ideally the data should be discarded).

Similarly the control server could be targeted as part of the DoS attack. In this situation the
administrator would be unable to take corrective action, should it be needed. As the control
server is written in Java, which receives regular updates from its vendor for the purpose of
security patching, it's possible a Java upgrade would stop the control server from functioning.

77 Jonathan Haddock, 10000112

29 FURTHER WORK

27 Commercial value

Should RESO become a viable, commercial product its uptake would depend, in part, on the
legal obligations of organisations. For example, for government and local government who
are connected to the Public Sector Network (PSN) would not be able to use the solution
until 2 Factor Authentication (2FA) was implemented. 2FA on externally accessible systems
is a strong recommendation (United Kingdom. CESG, 2012).

As RESO doesn't provide its own network health data it's necessary for existing network
monitoring solutions to provide data for processing. As shown in section 8 a multitude of
solutions exist so support would be needed from the respective software vendors to make them
compatible with RESO. Open Source projects such as Nagios could have this provided as
part of the RESO production process but this is not an option for closed source, commercial
software.

Reputation is an important factor in the adoption of new software and as RESO and its
publisher have no prior reputation companies may be hesitant to implement such a solution.
Until RESO has been proven both useful and safe adoption would be slow.

28 General conclusions

This project has reviewed existing technologies and products for use in monitoring network
health and found there is no single product suitable to cover all situations. Surveys and
interviews with Information Technology industry professionals found the preferred method to
be notified of problems by email although if an app were produced which allowed corrections
to be made it would be useful. It was found there was no product capable of issuing remedial
instructions so RESO was produced as a solution to this problem. It was also shown that
it is necessary to authenticate both the device and the user of the device in order for the
system to be as secure as possible.

29 Further work

This solution requires further development in order to become a polished commercial product.
As discussed in section 18.5 the current configuration doesn’t scale and this would need to

78 Jonathan Haddock, 10000112

29 FURTHER WORK

be addressed early on to bring the application out of the lab and into generic use.

Passwords are not currently protected as the system administrator is able to see the remote
user's password supplied in the decrypted message on the control server. Preventing this
would be a matter of Salting and hashing the password before it leaves the handset and then
comparing it to a value stored on the control server. A more secure approach would be a
move to using One Time Password (OTP) provided by a hardware token. The very nature
of such passwords will make the system more secure as a captured password is useless, plus
the user would need access to the hardware token. Tokens are widely available and common
place in businesses where 2 factor authentication is used to secure access to other systems.
Facilitating this additional step would require the RESO Control server to be made compatible
with the token vendor's authentication system as token codes are mathematically generated,
often using time as part of the seed.

While in the lab there was only one remote user that would be connecting to the control
server. This is not realistic in an actual deployment scenario so the Control Server would
need adjusting to make it capable of receiving multiple simultaneous connections. With
multiple system administrators comes the possibility that multiple instructions will be sent to
the control server in order to remedy a problem; in this case it would be necessary to notify
other administrators that corrective action was already being taken (and by whom).

Authorised users and devices need to be definable in an administrator friendly way, perhaps
by use of a GUI, and to be stored in an accessible format. A database would be appropriate
for this application with tables for users, devices and a link table defining which users can
use which devices. A suggested database entity relationship diagram can be found in figure
28 and foreign key constraints should be used to ensure the referential integrity of data.
Additionally commands and their related servers would need defining and later distributing
as noted in section 18.5.

user user_dev_link 1 device
id int(3), primary -..,....eid int(3), primary id int(3), primary
username |varchar(25), unigue user_id int(3) /identiﬁer text
salt text device _id int(3) owner varchar(50)
password |text active boolean active boolean
active boolean

Figure 28: Suggested (basic) database entity relationship diagram

The control server component would require full testing to reduce the likelihood it would be
compromised when attacked by a third party. Following a code review it would be worth
while publishing the control server to the Internet within a honey pot. As the honey pot is
attacked an analysis can be performed on the attacks in order to harden the software prior
to releasing it in a production setting. Such a testing setup is described in figure 29.

79 Jonathan Haddock, 10000112

29 FURTHER WORK

Internet

NAT Router

Firewall

192.168.0.1
E.g. IPCOP

172.16.0.1

Client computers

Honeypot

172.16.0.2
Control server pubished
on TCP 8000

Figure 29: Lab network showing an appropriately isolated honey pot network.

Finally, there is no documentation for the application so this would need developing so
administrators were able to deploy and maintain the system.

80 Jonathan Haddock, 10000112

REFERENCES

References

ACDX (2008, November). Digital signature diagram. [Online] Available at: http://
upload.wikimedia.org/wikipedia/commons/2/2b/Digital Signature_diagram.svg [Accessed
31 March 2014].

Atkinson, C. and Hummel, O. (2012). Iterative and incremental development of component-
based software architectures. In Proceedings of the 15th ACM SIGSOFT Symposium on
Component Based Software Engineering, CBSE '12, New York, NY, USA, pp. 77-82.
ACM.

Beck, K. (2002). Test driven development: by example (2 ed.). Boston, MA, USA: Addison-
Wesley.

Beck, K. et al. (2001). Manifesto for agile software development. [Online] Available at:
http://agilemanifesto.org/ [Accessed: 1 November 2014].

Bramley, J. (2014). Questions on your company's monitoring system. [Interview - transcript
with author]. 20 January 2014.

Bryan, A. and McDermott, J. (2011). Learning tree international course 468, system and
network security: A comprehensive introduction. Course.

Buevich, M., Schnitzer, D., Escalada, T., Jacquiau-Chamski, A., and Rowe, A. (2014). Fine-
grained remote monitoring, control and pre-paid electrical service in rural microgrids. In
Proceedings of the 13th International Symposium on Information Processing in Sensor
Networks, IPSN '14, Berlin, Germany, 15-17 April 2014, Piscataway, NJ, USA, pp. 1-12.
IEEE Press.

Burke, J., McDonald, J., and Austin, T. (2000). Architectural support for fast symmetric-
key cryptography. In Proceedings of the Ninth International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS IX. Cambridge,
Massachusetts, USA, 2000, New York, NY, USA, pp. 178-189. ACM.

Cassidy, A. (2014). Questions on your company's monitoring system. [Interview - transcript
with author]. 20 January 2014.

Cockburn, A. (2008, May). Using both incremental and iterative development. STSC
Crosstalk 21(5), 27-30.

Cody-Kenny, B., Guerin, D., Ennis, D., Carbajo, S.R, Huggard, M., and Mc Goldrick, C.
(2009). Performance evaluation of the 6LoWPAN protocol on MICAz and TelosB Motes.
In Proceedings of the 4th ACM Workshop on Performance Monitoring and Measurement
of Heterogeneous Wireless and Wired Networks, PM2HW2N '09. Tenerife, Canary Islands,
Spain, 2009, New York, NY, USA, pp. 25-30. ACM.

81 Jonathan Haddock, 10000112

http://upload.wikimedia.org/wikipedia/commons/2/2b/Digital_Signature_diagram.svg
http://upload.wikimedia.org/wikipedia/commons/2/2b/Digital_Signature_diagram.svg
http://agilemanifesto.org/

REFERENCES

de Chaves, S.A., Uriarte, R.B., and Westphall, C.B. (2013). Toward an architecture for
monitoring private clouds. In Communications Magazine, Volume 49(12), pp. 130-137.
IEEE.

Excirial and Renier, M (2009). Test driven development graphic. [On-
line] Available at: http://upload.wikimedia.org/wikipedia/commons/9/9c/Test-driven_
development.PNG [Accessed: 1 November 2014].

Fernandes, B. (2014). A simple example of using aes encryption in java and c. [Online]
Available at: https://gist.github.com /bricef/2436364 [Accessed: 22 November 2014].

Flick, U. (2007). Designing qualitative research (1 ed.). London, England: Sage Publications
Ltd.

GFl Max (2012). Ccr technology group — maxfocus remotemanagement — [case study].
[Online] Available at: http://www.youtube.com/v/uWfsMdLMHNE&rel=0&autoplay=1
[Accessed: 23 November 2014].

Glasser, B. G. and Strauss, A.L. (1967). The Discovery of Grounded Theory: Strategies for
Qualitative Research. Aldine Transaction.

Glenn, J. C. (2010). Handbook of Research Methods (2010 ed.). Oxford, England: Oxford
Book Company.

Google (2014). Android NDK. [Online] Available at: http://developer.android.com/tools/
sdk/ndk/index.html [Accessed: 27 April 2014].

Gurek, A., Gur, C., Gurakin, C., Akdeniz, M., Metin, S.K., and Korkmaz, I. (2013, Dec). An
android based home automation system. In 10th International Conference on High Capac-
ity Optical Networks and Enabling Technologies (HONET-CNS), 2013, Turkey Magosa,
Cyprus , 11-13 December 2013, pp. 121-125. IEEE Press.

HMKCode (2014, March). Android google cloud messaging tutorial. [Online] Available at:
http://hmkcode.com /android-google-cloud-messaging-tutorial/ [Accessed: 22 November
2014].

Hunt, A. and Thomas, D. (1999). The Pragmatic Programmer: From Journeyman to Master
(16 ed.). London, England: Addison-Wesley.

Issariyapat, C., Pongpaibool, P., Mongkolluksame, S., and Meesublak, K. (2012). Using
Nagios as a groundwork for developing a better network monitoring system. In Technology
Management for Emerging Technologies (PICMET), 2012 Proceedings of PICMET '12.
Vancouver, BC, Canada, July 29 2012-Aug. 2 2012, pp. 2771-2777. |EEE.

Katsaros, G., Kubert, R., and Gallizo, G. (2011). Building a service-oriented monitoring
framework with REST and Nagios. In Services Computing (SCC), 2011 IEEE International
Conference. Washington, DC, USA, 4-9 July 2011, pp. 426—431. IEEE.

82 Jonathan Haddock, 10000112

http://upload.wikimedia.org/wikipedia/commons/9/9c/Test-driven_development.PNG
http://upload.wikimedia.org/wikipedia/commons/9/9c/Test-driven_development.PNG
https://gist.github.com/bricef/2436364
http://www.youtube.com/v/uWfsMdLMHNE&rel=0&autoplay=1
http://developer.android.com/tools/sdk/ndk/index.html
http://developer.android.com/tools/sdk/ndk/index.html
http://hmkcode.com/android-google-cloud-messaging-tutorial/

REFERENCES

Knibbs, S. (2014). Comment from survey on monitoring systems. [Survey|. January 2014.

Lapan, S., Quartaroli, M.T., and Riemer, F.J. (Eds.) (2012). QUALITATIVE RESEARCH
An Introduction to Methods and Designs (1 ed.). San Francisco, USA: Jossey-Bass.

Larman, C. and Basili, V.R. (2003, June). lterative and incremental developments. a brief
history. Computer 36(6), pp. 47-56.

Massie, M. L., Chun, B.N., and Culler, D.E. (2004). The Ganglia distributed monitoring
system: design, implementation, and experience. Parallel Computing 30(7), 817 — 840.

MIT (2007). Kerberos v5 system administrator's guide. [Online] Available at: http://
web.mit.edu/Kerberos/krb5-1.5/krb5-1.5.4 /doc/krb5-admin /Clock-Skew.html [Accessed
20 November 2014].

Nagios Core Development Team (2010, August). Nagios core version 3.x documentation.
[Online] Available at: http://nagios.sourceforge.net/docs/nagioscore-3-en.pdf [Accessed:
1 November 2014].

Neuman, C., Hartman, S., and Raeburn, K. (2005, July). Rfc 4120: The kerberos network
authentication service (v5). [Online] Available at: tools.ietf.org/html/rfc4120 [Accessed
20 November 2014].

Parnerkar, A., Guster, D., and Herath, J. (2003, October). Secret key distribution protocol
using public key cryptography. J. Comput. Sci. Coll. 19(1), 182-193.

Royce, W. W. (1970). Managing the development of large software systems. In Preceedings,
IEEE WESCON, Los Angeles, California, USA 25th - 28th August 1970, pp. 1-9. IEEE.

Russinovich, M. E. and Solomon, D.A. (2009). Windows Internals (Fifth ed.). Redmond,
Washington: Microsoft Press.

Simmons, G. J. (1979, December). Symmetric and asymmetric encryption. ACM Comput.
Surv. 11(4), 305-330.

Smith, S. (2012). What is cloud computing? In Cloud computing, moving IT out of the
office, Chapter 1, pp. 2-7. Swindon, England: British Informatics Society Limited.

Sun, J., Hoke, E., Strunk, J.D., Ganger, G.R., and Faloutsos,C. (2006). Intelligent system
monitoring on large clusters. In Proceedings of the 3rd International Workshop on Data
Management for Sensor Networks (DMSNO06), Seoul, South Korea, 11 September 2006,
pp. 47-52. ACM.

Tang, L., Li, T., Schwartz, L., Pinel, F., and Grabarnik, G.Y. (2013). An integrated framework
for optimizing automatic monitoring systems in large IT infrastructures. In KDD ’'13
Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery
and data mining, Chicago, lllinois, USA, 11-14 August 2013, pp. 1249-1257. ACM.

83 Jonathan Haddock, 10000112

http://web.mit.edu/Kerberos/krb5-1.5/krb5-1.5.4/doc/krb5-admin/Clock-Skew.html
http://web.mit.edu/Kerberos/krb5-1.5/krb5-1.5.4/doc/krb5-admin/Clock-Skew.html
http://nagios.sourceforge.net/docs/nagioscore-3-en.pdf
tools.ietf.org/html/rfc4120

REFERENCES

Truong, N.-V. and Vu, D-L. (2012, Nov). Remote monitoring and control of industrial
process via wireless network and android platform. In 2012 International Conference on
Control, Automation and Information Sciences (ICCAIS), ICCAIS 2012. Ho Chi Minh City,
Vietnam , 26-29 November 2012, pp. 340-343. IEEE Press.

United Kingdom. CESG (2012). CESG Architectural Patterns Mobile Remote Endpoint
Devices at RESTRICTED. United Kingdom. CESG.

Wang, Z., Murmuria, R., and Stavrou, A. (2012). Implementing and optimizing an encryption
filesystem on android. In Proceedings of the 2012 IEEE 13th International Conference on
Mobile Data Management, MDM '12. Bengaluru, Karnataka, India ,23-26 July 2012,
Washington, DC, USA, pp. 52-62. IEEE Computer Society.

Washam, M. (2012). Automating windows azure virtual machines with pow-
ershell. [Online] Available at: http://michaelwasham.com/2012,/06,/08/
automating-windows-azure-virtual-machines-with-powershell/ [Accessed: 22 Novem-
ber 2014].

Wu, M., Zhang, Z., and Li, Y. (2013). Application research of Hadoop resource monitoring
system based on Ganglia and Nagios. In 4th IEEE International Conference on Software
Engineering and Service Science (ICSESS), Beijing, China, 23-25 May 2013, pp. 684-688.

84 Jonathan Haddock, 10000112

http://michaelwasham.com/2012/06/08/automating-windows-azure-virtual-machines-with-powershell/
http://michaelwasham.com/2012/06/08/automating-windows-azure-virtual-machines-with-powershell/

A SURVEY QUESTIONS

Part VII

Appendix

A Survey questions

1. How would you describe your job role?

IT Manager with overall responsibility for systems
In-house IT support engineer/technician

IT support engineer providing services to 3rd parties
Financial director

Other (please specify)

2. If known, please state the cost to your business in the event of your IT system failing
for 1 hour

3. Similarly, if known, please state the cost to your business in the event of your IT system
failing for 1 business day

Please indicate network monitoring systems with which you have experience

Big Brother
Cacti

Ganglia

GFl Max Remote Management
Icinga

Nagios
openView
ParMon
Smokeping
Solarwinds Orion
Splunk

Tivoli

Other (please specify)

85

Jonathan Haddock, 10000112

A SURVEY QUESTIONS

5. When the monitoring system detects a problem, is a support ticket automatically raised
in your helpdesk/management system?
e Yes (immediately)
e Yes (after a delay)
e No
e Other (please specify)
6. If yes to question 5, what percentage would you estimate were false positives? (a false

positive in this case is a ticket which was created by a transient problem, found to be
already resolved)

e Less than 25%
e 25 -50%
e Over 50%
e Over 75%
e Unsure
7. In the event of a problem, how would you prefer to be alerted to problems (please place
in order of preference)?
e Email

e SMS text message

Pager message

Phone call (automated)

Notification via desktop software (i.e. on a laptop or desktop computer)

Notification via smartphone app (not an SMS)

| prefer to wait until my users report the problem

86 Jonathan Haddock, 10000112

B INTERVIEW QUESTIONS

B Interview questions

These questions formed the basis of interviews conducted as part of this project, however,
additional questions were posed as appropriate to the interviewee.

1. Could you briefly outline the size of the system you monitor? How many servers,
clients, other devices?

What Operating Systems are present in your environment?

Do you have any automated systems in place to monitor the system?

If so, which one(s)?
How do you receive alerts from these monitoring systems?
What benefits do you see from your automated monitoring system?

Are there cost implications (in both having the system, e.g. license fees, and
not having the system, e.g. lost revenue)? That is, are the costs of your remote
monitoring system offset by cost savings elsewhere?

What were the deciding factors when choosing your monitoring system?

Of the monitoring system you use, what features do you value the most? Which
features do you wish were present?

4. What would be your preferred alerting method from a monitoring system? Why?

5. Do you think smart-phones could be more utilised by system administrators, and if so
how? (Specifically in regards to monitoring system health but also in general)

87

Jonathan Haddock, 10000112

N U R W N e

C XML SPECIFICATION

C XML Specification

e The XML document is contained within the <maintag> element and may contain
numerous <server> elements

e Within the <server> element are 3 children:

— <name>
(String) The server's name, for example DNSO01
</name>
- <ip>
(String) An IPv4 address
</ip>
— <state>

(String) State can be one of either up or down
</state>

<maintag>
<server>
<name>SERVERNAME< /name>
<ip>IP_ADDRESS</ip>
<state>[up | down]</state>
</server>
</maintag>

Listing 9: XML Specification for data exchange with RESO

88 Jonathan Haddock, 10000112

D RESO APP SOURCE CODE

D RESO App source code

Source code for the RESO app can be found here. There are a number of files, some in XML
and some Java. The structure of the source follows the requirements for an Android app and
can be seen in Figure 30. Note there are a number of drawable directories - these house
graphics required for varying screen resolutions. Additionally the raw directory contains the
sound file serverdownalert.ogg.

reso
assets

bin
gen
libs
res
drawable-hdpi
il ic_launcher.png
drawable-ldpi
drawable-mdpi
drawable-xhdpi
layout
@ gbout.xml
@ advancedprefs.xml
& detail.xml
& |login.xml
@ preferences.xml
menu
& main_menu.xml
raw
7l serverdownalert.ogg
values
e strings.xml
src
com.jonathanhaddock.reso
s About
AdvancedPrefs
AES
DetailxML
GcmBroadcastReceiver
GcmMessageHandler
Login
Main
Preferences
ServerList
@ AndroidManifest.xml

[T Y o S o RO i R o R o R o R |

Figure 30: File structure of the RESO app, as shown in JetBrains Intelli] v13.1

89 Jonathan Haddock, 10000112

O ® N U R W N e

== e
N = o

13

14
15

16

17
18
19
20

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

40

D RESO APP SOURCE CODE

D.1 XML: RESO App, AndroidManifest.xml

All activities and permissions must be defined in AndroidManifest.xml, it's not possible

to switch to an activity that's not defined in the file.

<?xml version="1.0" encoding="utf—-8"7>
<manifest xmlns:android="http://schemas.android.com/apk/res/android”
package="com. jonathanhaddock.reso”
android:versionCode="1"
android:versionName="1.0">
<uses—sdk android:minSdkVersion="14" android:targetSdkVersion="19" />
<uses—permission android:name="android.permission.INTERNET" />
<uses—permission android:name="android.permission.VIBRATE" />
<uses—permission android:name="android.permission.READ_PHONESTATE" />
<uses—permission android:name="android.permission.GET_ACCOUNTS" />
<uses—permission android:name="android.permission.WAKELOCK" />
<uses—permission android:name="com. google.android.c2dm. permission.
RECEIVE" />
<permission android:name="com. jonathanhaddock.reso.permission.
C2D_MESSAGE"
android:protectionLevel="signature"” />
<uses—permission android:name="com.jonathanhaddock.reso.permission.
C2D_MESSAGE" />

<application android:label="Qstring/app-name” android:icon="Q@drawable/

ic_launcher”>
<activity androidiname=".Login’
android:label="0string/activityLogin">
<intent—filter>

<category android:name="android.intent.category.LAUNCHER" /

>
<action android:name="android.intent.action.MAIN" />
</intent—filter>
</activity>
<activity android:name=".Main"
android:label="0string/app-name”>
</activity>
<activity android:name=".About"
android:label="Qstring/activityAbout” />
<activity android:name=".DetailXML"
android:label="@string/activityDetail” />

<activity android:name=".ServerList”
android:label="Qstring/activityServerList” />
<activity androidiname=".Preferences”
android:label="0string/activityPreferences"” />
<activity android:name=".AdvancedPrefs”

android:label="Q@string/activityAdvancedPrefs" />
<receiver

android:name=".GcmBroadcastReceiver”
android:permission="com. google.android.c2dm. permission .
SEND" >

<intent—filter>

90 Jonathan Haddock, 10000112

41

42
43
44
45
46
47

D RESO APP SOURCE CODE

<action android:name="com. google.android.c2dm.intent.
RECEIVE" />
<category android:name="com.jonathanhaddock.reso" />
</intent—filter>
</receiver>
<service android:name=".GcmMessageHandler" />
</application>

</manifest>

Listing 10: XML: RESO App - AndroidManifest.xml

91

Jonathan Haddock, 10000112

O ® N G e W N =

LT S T T N S N N S S ey
N & G A O N =R S © ®» 9N o @ & ®® N = o

28

29

30
31
32
33
34
35
36
37
38

39
40

D RESO APP SOURCE CODE

D.2 XML: RESO App, strings.xml

It is recommended that text strings in Android are stored in strings.xml; these can then be
referenced within layouts. This technique is particularly useful for internationalisation where
multiple translations may be available as the source code doesn't need to be adjusted.

<?xml version="1.0" encoding="utf-8"7>
<resources>
<string name="blank"> </string>
<string name="app_-name”>RESO</string>
<string name="activitylLogin">RESO — login</string>
<string name="activityAbout">About</string>
<string name="activityDetail">Detail</string>
<string name="activityServerList">ServerList</string>
<string name="activityPreferences”">Preferences</string>
<string name="activityAdvancedPrefs">Advanced Prefs</string>
<!—For menus—>
<string name="menuAbout”>About</string>
<string name="menuOverview">0Overview</string>
<string name="menuRefreshServerList">Refresh Server list</string>
<string name="menuPreferences”">Preferences</string>
<!—For login screen—>
<string name="labelEnterPassword”">Enter password:</string>
<string name="labelLoginError">Please try again</string>
<string name="labelBlankPass">Please enter a password</string>
<string name="hintPassword”">Type your password</string>
<string name="buttonlLogin">Login</string>
<!—For details—>
<string name="buttonReboot">Reboot</string>
<string name="buttonStart”">Start</string>
<!— For preferences —>
<string name="labelServerAddress”">Health Server address:</string>
<string name="labelControlServerAddress">Control Server address:</
string>
<string name="labelPrefsServerAddress”>Current Health server address:<
/string>
<string name="labelCurrentControlServerAddress”">Current Control server
address:</string>
<string name="hintServerAddress">Type server address</string>
<string name="hintServerPort">Port</string>
<string name="buttonRegisterGCM">Register for GCM</string>
<string name="buttonSavePrefs">Save preferences</string>
<string name="buttonAdvancedPrefs">Advanced preferences</string>
<string name="labelRememberLogin”">Remember login</string>
<string name="labelSendData">Enable send comms with server?</string>
<string name="labelBlank"> </string>
<string name="labelControllsHealth”">Address same as health server</
string>
<string name="labelUserDeviceld">User specified device ID:</string>
<string name="labelUserDeviceldHelp”">You can optionally provide a
device ID. Care should be taken to ensure this is unique. Use

92 Jonathan Haddock, 10000112

41
42
43
44

45

D RESO APP SOURCE CODE

with caution.</string>

<string name="labelDevicel MEI">Device IMEl:</string>

<string name="labelDeviceSerial">Device Serial:</string>

<!—For about—>

<string name="labelAcknowledgments”">The author would like to thank
online communities such as StackOverflow and Freenode for providing
assistance during the development of this app.</string>

</resources>

Listing 11: XML: RESO App - strings.xml

93

Jonathan Haddock, 10000112

O ® N G e W N =

—_
= o

D RESO APP SOURCE CODE

D.3 Java: RESO App, About.java

About. java is a simple example showing an activity which simply calls a view.

most other Java classes, extend the Main class providing access to additional variables and

methods (see Section D.14).

package com.jonathanhaddock.reso;
import android.os.Bundle;

public class About extends Main {
@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView (R.layout.about);

Listing 12: Java: RESO App - About.java

94

Jonathan Haddock, 10000112

© ® N G kR W N =

10
11
12
13
14
15
16
17
18
19
20
21

D RESO APP SOURCE CODE

D.4 XML: RESO App, about.xml

This XML file defines the layout used in the About activity. There are two TextView
elements, one which has the text entered directly (line 9) and another which pulls in text
from the strings.xml file (line 18). Being a relative layout the order of elements on screen
is described by its position relative to another. Line 17 is an example.

<?xml version="1.0" encoding="utf-8"7>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android”
android:layout_width="match_parent”
android:layout_height="match_parent">
<TextView

android:id="@+id /labellcon”

android:layout_width="wrap_content”

android:layout_height="wrap_content”

android:text="Application_icon_from_\nhttp://openclipart.org/
detail /36691 /tango—network—offline —by—warszawianka”

/>

<TextView

android:id="0+id /labelAcknowledgments”

android:layout_width="wrap_content”

android:layout_height="wrap_content”

android:layout_centerHorizontal="true”

android:layout_below="Qid/labellcon”

android:layout_marginTop="10dp"

android:text="0string/labelAcknowledgments”

android:textSize="8pt"

/>

</RelativelLayout>

Listing 13: XML: RESO App - about.xml

The author would like to thank online
communities such as StackOverflow
and Freenode for providing

during the development of this app.

95 Jonathan Haddock, 10000112

© ® N G kR W N =

R R R B W L W W W W W W W RN RNNNRNN NN N R s e s e s s s
B N R S Y ®» 9 G B DR R SO ® N0 a R 0N R ©S Y ® N0 U kR W RN = O

D RESO APP SOURCE CODE

D.5 XML: RESO App, advancedprefs.xml

The advanced preferences activity allows users to view their device IMEI and serial number,
which the administrator requires, and also the option of providing a friendly device ID. The
XML below shows two TextView elements with blank text (lines 60-69 and 80-89). These
are populated by code in AdvancedPrefs. java.

<?xml version="1.0" encoding="utf-8"7>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android”
android:layout_width="match_parent”
android:layout_height="match_parent”
android:orientation="vertical”
android:overScrollMode="ifContentScrolls”
android:scrollbarStyle="insideOverlay”
android:scrollbars="vertical”
>
<ScrollView
android:layout_width="fill_parent”
android:layout_height="wrap_content”>
<RelativelLayout
android:layout_width="match_parent”
android:layout_height="wrap_content”">

<TextView
android:id="0@+id /labelUserDeviceld”
android:layout_width="wrap_content”
android:layout_height="wrap_content”
android:layout_centerHorizontal="true”
android:layout_marginTop="20dp"
android:text="@string/labelUserDeviceld”
android:textSize="8pt"
/>

<EditText
android:id="@+id/inputUserDeviceld”
android:layout_width="300dp"
android:layout_height="wrap_content”
android:layout_centerHorizontal="true"
android:layout_below="Qid/labelUserDeviceld”
android:layout_marginTop="15dp"
android:cursorVisible="true”
android:background="#FFF"
android:textSize="8pt"
android:textColor="#000"
android:maxLength="250"
android:inputType="text">

</EditText>

<TextView
android:id="0+id/labelUserDeviceldHelp”
android:layout_width="wrap_content”
android:layout_height="wrap_content”
android:layout_centerHorizontal="true"

96 Jonathan Haddock, 10000112

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

D RESO APP SOURCE CODE

android:layout_below="@id/inputUserDeviceld”
android:layout_marginTop="20dp"
android:text="0string/labelUserDeviceldHelp"
android:textSize="8pt"

/>

<TextView

android:id="@+id/labelDevicel MEI"
android:layout_width="wrap_content”
android:layout_height="wrap_content”
android:layout_centerHorizontal="true”
android:layout_below="@id/labelUserDeviceldHelp”
android:layout_marginTop="20dp"
android:text="@string/labelDevicelMEI"
android:textSize="8pt"

/>

<TextView

android:id="@+id /labelDevicelMEIValue”
android:layout_width="wrap_content”
android:layout_height="wrap_content”
android:layout_centerHorizontal="true”
android:layout_below="@id/labelDevicelMEI"
android:layout_marginTop="20dp"
android:text="@string/blank”
android:textSize="8pt"

/>

<TextView

android:id="0+id/labelDeviceSerial”
android:layout_width="wrap_content”
android:layout_height="wrap_content”
android:layout_centerHorizontal="true"
android:layout_below="@id/labelDevicelMEIValue"
android:layout_marginTop="20dp"
android:text="@string/labelDeviceSerial”
android:textSize="8pt"

/>

<TextView

<Button

android:id="0+id/labelDeviceSerialValue”
android:layout_width="wrap_content”
android:layout_height="wrap_content”
android:layout_centerHorizontal="true"
android:layout_below="@id/labelDeviceSerial”
android:layout_marginTop="20dp"
android:text="Qstring/blank”
android:textSize="8pt"

/>

android:id="@+id /buttonSavePrefs”
android:layout_width="wrap_content”
android:layout_height="wrap_content”
android:layout_centerHorizontal="true"
android:layout_below="@id/labelDeviceSerialValue”
android:layout_marginTop="15dp"

97

Jonathan Haddock, 10000112

D RESO APP SOURCE CODE

97
98
99
100
101

android:text="@string/buttonSavePrefs”
android:onClick="savePrefs”

/>

</RelativeLayout>
</ScrollView>

102 |</RelativeLayout>

Listing 14: XML: RESO App - advancedprefs.xml

02- UK % =.alid 12:47

Advanced Prefs

User specified device ID:

JonathanPhone

You can optionally provide a device ID. Care
should be taken to ensure this is unique. Use
with caution.

Device IMEI:
359290041745495
Device Serial:

TA5740GQTA

Save preferences

©S [

98

Jonathan Haddock, 10000112

O ® N U R W N =

O S
® N o U ke W N = O

19
20
21
22
23

24

25

26
27

28

29

30
31

D RESO APP SOURCE CODE

D.6 Java: RESO App, AdvancedPrefs.java

The onCreate() method defines the view and populates on screen elements with current
information: lines 23-25 create objects for the updates which require updating while the
remainder of the method obtains the relevant information and updates the text value of the
objects.

A second class, savePrefs(), saves the user specified device ID to Shared Preferences
storage before displaying a pop-up message (a toast) and returning the user to the server
list.

package com. jonathanhaddock.reso;

import android.content.Context;

import android.content.Intent;

import android.content.SharedPreferences;
import android.os.Build;

import android.os.Bundle;

import android.telephony. TelephonyManager;
import android.view. View;

import android.widget. EditText;

import android.widget. TextView;

import android.widget. Toast;

public class AdvancedPrefs extends Main {

public void onCreate(Bundle savedInstanceState) {

/%%

x Define the view and then update on screen boxes with current
values.

+/

super.onCreate(savedInstanceState);
setContentView (R.layout.advancedprefs);

EditText inputUserDeviceld = (EditText) findViewByld(R.id.
inputUserDeviceld);

TextView labelDevicelMEIValue = (TextView) findViewByld(R.id.
labelDevicel MEIValue);

TextView labelDeviceSerialValue = (TextView) findViewByld(R.id.
labelDeviceSerialValue);

SharedPreferences sharedPrefUserDeviceld = getSharedPreferences ("
deviceldFromUser” , 0);

String deviceldFromUser = sharedPrefUserDeviceld.getString(
deviceldFromUser”, "");

”

inputUserDeviceld.setText(deviceldFromUser);
TelephonyManager telephonyManager = (TelephonyManager)
getSystemService (Context. TELEPHONY_SERVICE) ;

99 Jonathan Haddock, 10000112

32
33
34
35
36
37
38
39
40
41

42
43

44

45
46

47
48
49
50
51

52

53

54
55

D RESO APP SOURCE CODE

}

labelDevicelMEIValue.setText (telephonyManager.getDeviceld());
labelDeviceSerialValue.setText(Build.SERIAL);

public void savePrefs(View view) {

/%%

x Once "save preference” has been tapped write the values

*/

Intent intent = new Intent(AdvancedPrefs.this, ServerlList.class);

EditText inputUserDeviceld = (EditText) findViewByld(R.id.
inputUserDeviceld);

String userDeviceld = inputUserDeviceld.getText().toString();

SharedPreferences sharedPrefUserDeviceld = getSharedPreferences(’
deviceldFromUser” , 0);

SharedPreferences. Editor editorPrefUserDeviceld =
sharedPrefUserDeviceld . edit();

if (luserDeviceld.isEmpty()) {
editorPrefUserDeviceld . putString (" deviceldFromUser” ,

userDeviceld);

}

editorPrefUserDeviceld .commit();

/% Toast to say the preference has been saved then go back to
ServerList: x/

Toast.makeText(getApplicationContext (), " Preferences._saved”, Toast
.LENGTH_LONG) . show () ;

startActivity (intent);

Listing 15: Java: RESO App - AdvancedPrefs.java

100

Jonathan Haddock, 10000112

D RESO APP SOURCE CODE

D.7 Java: RESO App, AES.java

AES. java provides no visible output to the user - it's not an Android activity. Methods within
AES. java are called from elsewhere in the app to encrypt messages prior to transmission to
the control server. The decrypt () method is not used in the current RESO app. This code

© ® N G kR W N =

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

30
31
32
33
34

35

36
37
38
39

uses contributions from Fernandes (2014).

package com.jonathanhaddock.reso;

import javax.crypto.Cipher;
import javax.crypto.spec.lvParameterSpec;
import javax.crypto.spec.SecretKeySpec;

Vit
x From: https://gist.github.com/bricef /2436364, Brice Fernandes (bricef)
x NOTE: key and plaintext must both be multiples of 16 or padded with \0
unless you use AES/CBC/PKCS5Padding
x NOTE: IV must also be 16 bytes long
*/
public class AES {
static String IV = "ABCDEFGHIJKLMNOP" ;
static String encryptionKey = "0123456789abcdef0123456789abcdef” ;

public static byte[] aesmain(String providedPlaintext) {

Vit

x Take plain text from elsewhere in the app and then encrypt it.

v/

try {
byte[] cipher = encrypt(providedPlaintext , encryptionKey);
return cipher; //Cipher is of type byte[]

} catch (Exception e) {
e.printStackTrace();

}

return null; //was encString

}

public static byte[] encrypt(String plainText, String encryptionKey)
throws Exception {
/%%
x Main encryption function
*/
Cipher cipher = Cipher.getlnstance ("AES/CBC/PKCS5Padding”);
SecretKeySpec key = new SecretKeySpec(encryptionKey.getBytes("UTF
-8"), "AES");
cipher.init(Cipher .ENCRYPT.MODE, key, new IvParameterSpec(IV.
getBytes ("UTF-8")));
return cipher.doFinal(plainText.getBytes("UTF-8"));
}

public static String decrypt(byte[] cipherText, String encryptionKey)
throws Exception {

101 Jonathan Haddock, 10000112

40
41
42
43
44

45

46

47
48

D RESO APP SOURCE CODE

/%%
x Main decryption function — currently unused
*
/
Cipher cipher = Cipher.getlnstance ("AES/CBC/PKCS5Padding”) ;
SecretKeySpec key = new SecretKeySpec(encryptionKey.getBytes("UTF
-8"), "AES");
cipher.init(Cipher .DECRYPT_.MODE, key, new IvParameterSpec(IV.
getBytes ("UTF-8")));
return new String(cipher.doFinal(cipherText), "UTF-8");

Listing 16: Java: RESO App - AES.java

102

Jonathan Haddock, 10000112

D RESO APP SOURCE CODE

D.8 XML: RESO App, detail.xml

In the current build of RESO this view merely shows text as hard-coded in DetailXML. java,
discussed in section D.9. This layout provides some additional summary information (the
server IP) and two buttons - one to reboot and the other to start the server in question.

As a precaution, tapping either button will prompt the user to confirm their actions. Again,

© ® N G R W N =

BB W W W W W W W W W N NN N RN NRN N R s s s s s e e s
HE S v ® 9 3 G FE O RN R~/ S Y ® N a B O N R S L ® N o G ok W N = o

this is part of DetailXML. java.

<?xml version="1.0" encoding="utf-8"7>

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android”

"

android:layout_width="match_parent”
android:layout_height="match_parent">
<TextView
android:id="0+id/labellP"
android:layout_width="wrap_content”
android:layout_height="wrap_content”
android:layout_marginTop="20dp"
android:layout_marginLeft="20dp"
android:textSize="12pt"
android:text="1P:"
/>
<TextView
android:id="0+id /labellPValue”
android:layout_width="wrap_content”
android:layout_height="wrap_content”
android:layout_marginTop="20dp"
android:layout_marginLeft="20dp"
android:layout_toRightOf="Qid/labellP”
android:textSize="12pt"

android:text="—incomplete —"
/>

<Button
android:id="0+id /buttonReboot”
android:layout_width="wrap_content”
android:layout_height="wrap_content”
android:layout_marginTop="20dp"
android:layout_marginLeft="20dp"
android:layout_below="@id/labellP"
android:layout_centerHorizontal="true"
android:text="@string/buttonReboot”
android:onClick="rebootServer”
/>

<Button

android:id="0+id /buttonStartServer”
android:layout_width="wrap_content”
android:layout_height="wrap_content”
android:layout_marginTop="20dp"
android:layout_marginLeft="20dp"

android:layout_below="@id/buttonReboot”

103 Jonathan Haddock, 10000112

42
43
44
45
46

D RESO APP SOURCE CODE

android:layout_centerHorizontal="true”
android:text="@string/buttonStart”

android:onClick="startServer"”

/>

</RelativeLayout>

Listing 17: XML: RESO App - detail.xml

02 - UK

Detail for Server1

IP:

192.168.0.1

Reboot

Start

46 (1 17:55

104

Jonathan Haddock, 10000112

© ©® N o G ke W N =

T T T N
G R DN R S v ® N0 @R @ N = O

26

27
28
29

D RESO APP SOURCE CODE

D.9 Java: RESO App, DetailXML.java

As mentioned, the current build of RESO doesn't extract detailed server information from
the provided XML file - this functionality would need adding before the solution became
a viable product. Instead, hard-coded entries are inserted into TextView elements of the
layout defined in detail.xml (lines 26-28). This file shows examples to to do comments to
provide guidance as the source is developed.

Methods rebootServer () (lines 31-71) and startServer() (lines 73-112) are virtually
identical so should be refactored into a single method, potentially in a different Java class
altogether. Doing so would reduce the likelihood of errors when updating the code.

Sending instructions to the control server is performed by the method contactControlServer ()

which in turn calls AES,aesmain() to obtain an encrypted string prior to transmission. This
functionality should be split into a separate class as it isn't logical to be present in the detail
view.

package com.jonathanhaddock.reso;

import android.app.AlertDialog;
import android.content.Dialoglnterface;
import android.content.Intent;

import android.os.Bundle;

import android . text.InputType;

import android.view. View;

import android.widget. EditText;
import android.widget. TextView;
import android.widget. Toast;

import java.io.lOException;

import java.io.PrintWriter;

import java.net.Socket;

import java.net.UnknownHostException;
import java.util.Arrays;

public class DetailXML extends Main {
private String toastMessage = "Problem._rebooting._server”;

@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView (R. layout.detail);
//TODO: Parse the XML into an array, then lookup the relevant
server by key (serverlD)
TextView labellPValue = (TextView) findViewByld(R.id.labellPValue)

setTitle(”" Detail_for_Serverl”); /xx Sets the activity title x/
labellPValue.setText("192.168.0.1"); /xx Sets the IP TextView x/

105 Jonathan Haddock, 10000112

30
31
32
33

34
35

36
37
38
39
40
41
42
43
44
45

46
47

48
49

50

51
52
53

54
55

56
57
58

59
60
61
62

63
64

65
66
67
68
69

D RESO APP SOURCE CODE

public void rebootServer(View view) {

/+*% To reboot a server from the "Reboot” button:x/

AlertDialog.Builder alertDialogBuilder = new AlertDialog.Builder(
this);

final EditText userPassword = new EditText(this);

userPassword . setlnputType (InputType. TYPE_.CLASS_TEXT | InputType.
TYPE_TEXT_VARIATION_PASSWORD) ;

userPassword.setHint (" Password”);

userPassword.setLines (1);

alertDialogBuilder.setView (userPassword);

/+x*x set dialog title x/
alertDialogBuilder.setTitle (" Reboot?");

/+*x set dialog message */
alertDialogBuilder
.setMessage (" Are_you_sure_you_want.to_reboot_this_.server?”

.setCancelable(false)

.setPositiveButton ("Yes”, new Dialoglnterface.
OnClickListener () {
public void onClick(Dialoglnterface dialog, int id) {

String [] rebootServer = contactControlServer(”
rebootHH" , userPassword.getText().toString());
if (rebootServer[0] != null && rebootServer[1l] I=
null) {
toastMessage = rebootServer[1];
} else {
toastMessage = "Problem_rebooting._server , .
possible_connection_problem”;
}
Toast rebootingServer = Toast.makeText(

getApplicationContext (), toastMessage, Toast.
LENGTH_LONG) ;
rebootingServer.show();

Intent intent = new Intent(DetailXML. this ,
ServerlList.class);
startActivity (intent);

}
1)
.setNegativeButton("No”, new Dialoglnterface.
OnClickListener () {
public void onClick(Dialoglnterface dialog, int id) {
// if this button is clicked, just close the
dialog box and do nothing
dialog.cancel();

P

// create alert dialog and show it

106 Jonathan Haddock, 10000112

70
71
72
73
74
75

76
77

78
79
80
81
82
83
84
85
86

87
88

89
90

91

92

93
94

95
96

97
98
99

100
101
102
103

104
105

106
107

D RESO APP SOURCE CODE

alertDialogBuilder.create().show();

}

public void startServer(View view) {

/+*x To start a server from the "Start” button:x/

AlertDialog.Builder alertDialogBuilder = new AlertDialog.Builder(
this);

final EditText userPassword = new EditText(this);

userPassword .setlnputType (InputType. TYPE_.CLASS_ TEXT | InputType.
TYPE_TEXT_VARIATION_PASSWORD) ;

userPassword .setHint (" Password"”);

userPassword .setLines (1);

alertDialogBuilder.setView (userPassword);

// set dialog title

alertDialogBuilder.setTitle (" Start_this_server?”);

// set dialog message
alertDialogBuilder
.setMessage (" Are_you_sure_you_want.to_switch._on_this.
server?”)
.setCancelable(false)
.setPositiveButton(”"Yes”, new Dialoglnterface.
OnClickListener () {
public void onClick(Dialoglnterface dialog, int id) {
String [] responseContactControlServer =

contactControlServer("startHH" , userPassword.
getText().toString());

if (responseContactControlServer[0] = null &&
responseContactControlServer[1] != null) {
toastMessage = responseContactControlServer

[1];

} else {

toastMessage = " Problem_starting._server ,.

possible_connection_problem”;

}

Toast startingServer = Toast.makeText(
getApplicationContext (), toastMessage, Toast.
LENGTH_LONG) ;

startingServer .show();

Intent intent = new Intent(DetailXML. this ,
ServerList.class);
startActivity (intent);

}
)
.setNegativeButton("No”, new Dialoglnterface.
OnClickListener () {
public void onClick(Dialoglinterface dialog, int id) {
/xx if this button is clicked, just close the
dialog box and do nothing x/
dialog.cancel();

107

Jonathan Haddock, 10000112

108
109
110
111
112
113
114

115

116
117
118
119
120
121
122
123
124
125

126
127
128

129
130

131
132
133

134
135
136
137
138
139
140
141
142

143
144
145
146
147

D RESO APP SOURCE CODE

1)

// create alert dialog and show it
alertDialogBuilder.create () .show();

}

public String[] contactControlServer(String instruction, String
userPassword) {
//TODO: Set status to be something that's relevant, maybe make an
array (status,6 status detail)
String [] response = new String[2];
if (!mainSendData()) {
response [0] = " fail";
response [1] = " Control.server._comms_disabled";
return response;

}

//Connect to the control server:
try {
Socket s = new Socket(mainControlServerAddress(),
mainControlServerPort());
if (s.isConnected()) {
//Encrypt the instruction:

String message = instruction + ";" + (System.
currentTimeMillis() / 1000) + ";" + deviceldentifier()
+ ":" 4+ userPassword;

byte[] encString = AES.aesmain(message);

PrintWriter out = new PrintWriter(s.getOutputStream (),
true);

out.println(Arrays.toString(encString)); //was message

out.close();

//TODO: Make it so the status is only SUCCESS if the
server has received the instruction:

s.close();

response [0] = "ok";

response [1] = "Action_successful”;

} catch (UnknownHostException e) {
// TODO: If the host isn 't known, find some way to say so
e.printStackTrace () ;
} catch (IOException e) {
// TODO: If this occurs state that an "unknown error has
occurred”
e.printStackTrace();

}

return response;

Listing 18: Java: RESO App - DetailXML.java

108 Jonathan Haddock, 10000112

D RESO APP SOURCE CODE

Are you sure you want to reboot this

server?

Figure 31: RESO: DetailXML. java offers a confirmation prompt prior to rebooting

D.10 Java: RESO App, GemBroadcastReceiver.java

In order for GCM to function it's necessary for a service to be running which will receive
messages and pass to a separate handler. This class has no graphical output, merely listening

© ® N G ke W N =

_ s =
N = o

13
14
15
16

17
18
19
20

in the background for appropriate GCM messages.

This code includes contributions from an online tutorial (HMKCode, 2014).

package com.jonathanhaddock.reso;

import android.app. Activity;
import android.content.ComponentName;
import android.content.Context;
import android.content.Intent;
import android.support.v4.content. WakefulBroadcastReceiver;
public class GcmBroadcastReceiver extends WakefulBroadcastReceiver {
@Override
public void onReceive(Context context, Intent intent) {
// Explicitly specify that GecmMessageHandler will handle the
intent.
ComponentName comp = new ComponentName(context.getPackageName(),
GcmMessageHandler. class . getName());
// Start the service, keeping the device awake while it is
launching .
startWakefulService(context, (intent.setComponent(comp)));
setResultCode (Activity .RESULT_OK);
}
}
Listing 19: Java: RESO App - GecmBroadcastReceiver.java
109 Jonathan Haddock, 10000112

© ©® N o G kR W N =

WoOwW W W W W oW NN NN NN NN NN R e s s e e e e
S @ R O RS Y ® N U A DN R, S LV ® N UaRe W N = O

37
38
39

D RESO APP SOURCE CODE

D.11 Java: RESO App, GemMessageHandler.java

The message handler is passed the message from the broadcast receiver and acts on it
accordingly. In this example the device vibrates (lines 42-43), an alarm sound is played (lines
45-46), a toast is displayed (seen by the user if they're looking at their device when the alert
is received)(lines 54-60) and a notification is placed on the notification bar (lines 62-73).
Other than the toast and the notification there is no visible output.

This code includes contributions from an online tutorial (HMKCode, 2014).

package com.jonathanhaddock.reso;

import android.app.IntentService;
import android.app. Notification;

import android.app. NotificationManager;
import android.app.Pendinglntent;
import android.content.Context;

import android.content.Intent;

import android.media. MediaPlayer;
import android.os.Bundle;

import android.os.Handler;

import android.os. Vibrator;

import android.widget. Toast;

import com.google.android.gms.gcm. GoogleCloudMessaging;

public class GcmMessageHandler extends IntentService {

String mes, messageText;
private Handler handler;

public GcmMessageHandler() {
super (" GcmMessageHandler”) ;
}

@Override

public void onCreate() {
super.onCreate () ;
handler = new Handler();

}

@Override
protected void onHandlelntent(Intent intent) {
Bundle extras = intent.getExtras();

GoogleCloudMessaging gcm = GoogleCloudMessaging . getinstance(this);

// The getMessageType() intent parameter must be the intent you
received in your BroadcastReceiver.

String messageType = gcm.getMessageType(intent);

mes = extras.getString (" title");

110 Jonathan Haddock, 10000112

40
41
42

43
44
45

46

47
48
49
50
51
52
53
54
55
56
57

58
59
60
61
62
63
64
65
66

67
68

69

70

71

72
73
74
75
76
77
78
79
80

D RESO APP SOURCE CODE

messageText = extras.getString (" message”);

Vibrator v = (Vibrator) getSystemService(Context.VIBRATOR_SERVICE)

1

v.vibrate(1000);

MediaPlayer mediaPlayer = MediaPlayer.create(this, R.raw.
serverdownalert);

mediaPlayer.start(); // no need to call prepare(); create() does
that for you

showToast () ;

placeNotification ();

cleanMediaPlayer(mediaPlayer);
GcmBroadcastReceiver.completeWakefullntent(intent);

}

public void showToast() {
handler.post(new Runnable() {
public void run() {
Toast.makeText(getApplicationContext (), mes + "\n" +
messageText, Toast.LENGTH_LONG) .show();

}
19K
}
public void placeNotification() {
String subject = " Servers.down”;
String title = " !l _ALERT_.—_SERVERS.DOWN" ;
String body = " Please._.check_.RESO, _one_or_more_servers._are._down";
Intent notifylntent = new Intent(GcmMessageHandler. this
ServerList.class);
NotificationManager NM;
NM = (NotificationManager) getSystemService (Context.
NOTIFICATION_SERVICE) ;
Notification notify = new Notification(android.R.drawable.
stat_notify_more , title, System.currentTimeMillis());
Pendinglintent pending = Pendinglntent.getActivity (
getApplicationContext(), 0, notifylntent, 0);
notify.setLatestEventinfo(getApplicationContext(), subject, body,
pending);
NM. notify (0, notify);
}

public void cleanMediaPlayer(MediaPlayer mediaPlayer) {
mediaPlayer.reset();
mediaPlayer.release ();
mediaPlayer = null;

Listing 20: Java: RESO App - GecmMessageHandler.java

111 Jonathan Haddock, 10000112

T I L L B O N

B R e W W W W 0 W W W W RN RNRNNRNN NN N s s s s s e s s
W RN R S Y ®» 9 T R PN R DS Y ® N R 0N R, S Y ® N U ke W N = O

D RESO APP SOURCE CODE

D.12 XML: RESO App, login.xml

The login form for the app only accepts a password and is used to prevent access to additional
app functions rather than to authenticate the user to the system. A “hint” is paced in the
text box to act as an additional prompt to the user (although there's also a clear heading
above the only text box on the page). An empty TextView exists beneath the button which
is populated with help / error text by Login. java

<?xml version="1.0" encoding="utf-8"7>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android”
android:layout_width="match_parent”
android:layout_height="match_parent”>

<TextView
android:id="0+id /labelEnterPassword”
android:layout_width="wrap_content”
android:layout_height="wrap_content”
android:layout_centerHorizontal="true"
android:layout_marginTop="20dp"
android:text="0string/labelEnterPassword”
android:textSize="12pt"

/>

<EditText
android:id="0@+id /inputPassword”
android:layout_width="300dp"
android:layout_height="wrap_content”
android:layout_centerHorizontal="true”
android:layout_below="Qid/labelEnterPassword
android:layout_marginTop="15dp"
android:cursorVisible="true"
android:background="#FFF"
android:textSize="8pt"
android:textColor="#000"
android:password="true"”
android:maxLength="25"
android:inputType="textPassword"”
android:hint="@string/hintPassword”>
<requestFocus />

</EditText>

”

<Button
android:id="0@+id /buttonLogin”
android:layout_width="wrap_content”
android:layout_height="wrap_content”
android:layout_centerHorizontal="true"
android:layout_below="@id/inputPassword”
android:layout_marginTop="15dp"
android:text="0string/buttonLogin”
android:onClick="login”
/>

<TextView

android:id="0+id /labelPasswordError”

’

android:layout_width="wrap_content”

112 Jonathan Haddock, 10000112

44
45
46
47
48
49
50
51

D RESO APP SOURCE CODE

android:layout_height="wrap_content”
android:layout_centerHorizontal="true”
android:layout_below="Qid/buttonLogin”
android:layout_marginTop="15dp"
android:text="0string/blank”
android:textSize="12pt"

/>

</RelativeLayout>

Listing 21: XML: RESO App - login.xml

02-UK © <4 @ 20:57

RESO - login

Enter password:

Type your password

Login

113 Jonathan Haddock, 10000112

O ® N U R W N =

S ey
S © ® N o Uk @ N = O

21

22
23
24
25
26
27
28
29
30

31
32
33
34
35

D RESO APP SOURCE CODE

D.13 Java: RESO App, Login.java

Login. java handles “authentication” from the login form. Firstly, the preference to “re-
member login” is checked and if true the server list is shown immediately. Otherwise the
login is processed up to a maximum of 4 times before the app exits.

Clearly this mechanism is far from perfect. Firstly, the password is hard-coded, a separate
preference could be included to allow users to set their own passwords in a commercial app.
Secondly, the result of the logon is not used anywhere else so if the user could instead call
the ServerList activity (rather than logon)

package com. jonathanhaddock.reso;

import android.app. Activity;

import android.content.Intent;

import android.content.SharedPreferences;
import android.os.Bundle;

import android.view. View;

import android.widget. EditText;

import android.widget. TextView;

public class Login extends Activity {
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView (R.layout.login);
/+x |If RememberLogin is set, skip to the overview

x Note — this isn’'t secure but does offer a user preference

*/

Intent intent;

SharedPreferences sharedPrefRememberLogin = getSharedPreferences(”
rememberLogin”, 0);

boolean rememberLogin = sharedPrefRememberLogin.getBoolean ("
rememberLogin” , false);

if (rememberLogin) {
intent = new Intent(Login.this, ServerList.class);
startActivity (intent);

}

@Override
public void onBackPressed () {

/+**% Ensure that pressing back does nothing by leaving this method
blank x/

}

private int loginCounter = 0;

public void login(View view) {

114 Jonathan Haddock, 10000112

36
37

38

39
40
41
42
43

44
45
46
47

48
49

50

51
52
53
54

55

56
57
58
59
60

D RESO APP SOURCE CODE

Intent intent = new Intent(Login.this, ServerList.class);

EditText inputPassword = (EditText) findViewByld(R.id.
inputPassword);

TextView errorText = (TextView) findViewByld(R.id.
labelPasswordError);

if (inputPassword.getText().toString().length() > 0) {
if (loginCounter >= 3) {
System . exit (0);
} else if (inputPassword.getText().toString().equals(" password
")) A
/xx If the password is as hard—coded above x/
startActivity (intent);
} else {
/+% Increment the login counter, update the help/error
text, blank the password box x/
loginCounter++;
String labelLoginError = this.getResources().getString(R.
string .labelLoginError);
errorText.setText(labelLoginError + "_
+ "._—_attempts_remaining”);
inputPassword .setText("");

”

+ (4—loginCounter)

}
} else {

/+x If no password was entered don’'t increment the counter,
just start again x/

String labelBlankPass = this.getResources().getString(R.string
.labelBlankPass);

errorText.setText(labelBlankPass);

inputPassword . requestFocus();

Listing 22: Java: RESO App - Login.java

115

Jonathan Haddock, 10000112

O ® N U R W N =

e e T
® N o U ke W N = O

19
20
21
22
23
24
25
26

27

28

29
30

D RESO APP SOURCE CODE

D.14 Java: RESO App, Main.java

The Main class isn't an Android activity but is extended by the classes which are - it has no
graphical output of its own. Main serves the following purposes:

Creates app-wide variables for user preferences, reducing duplicate code within the
project (lines 13-44)

Defines the device identifying characteristics such as serial number and IMEI (lines
46-68)

Creates a menu which is placed in the top right of each activity (lines 70-75))

Specifies routing for each menu item when it's selected (lines 77-97)

package com. jonathanhaddock.reso;

import android.app. Activity;

import android.content.Context;

import android.content.Intent;

import android.content.SharedPreferences;
import android.os.Build;

import android.telephony.TelephonyManager;
import android.view.Menu;

import android.view.Menultem;

public class Main extends Activity {

/%%
* Get some variables which will be needed most places:
x Server Address

*/
public String mainServerAddress() {
SharedPreferences sharedPref = getSharedPreferences(”serverAddress
n’ 0)'
return sharedPref.getString (" serverAddress”, "");
}
/%%
* Control Server Address
*/

public String mainControlServerAddress() {
SharedPreferences sharedPrefControlServerAddress =

getSharedPreferences (" controlServerAddress”, 0);
return sharedPrefControlServerAddress.getString(”
controlServerAddress”, "");
}
/xox

116

Jonathan Haddock, 10000112

31
32
33
34

35
36
37
38
39
40
41
42

43
44
45
46
47
48
49
50
51

52
53
54
55
56
57
58
59
60
61
62

63

64
65

66
67
68
69
70
71
72
73
74
75
76

D RESO APP SOURCE CODE

x Control Server Port

*/

public int mainControlServerPort() {
SharedPreferences sharedPrefControlServerPort =

getSharedPreferences(" controlServerPort”, 0);
return sharedPrefControlServerPort.getlnt (" controlServerPort”, 0);
ViL
* Allow control server comms?
*/

public boolean mainSendData() {
SharedPreferences sharedPrefSendData = getSharedPreferences(
sendData”, 0);

”

return sharedPrefSendData.getBoolean("sendData”, false);
/%%
x Get "unique” device information:
*/

public String deviceldentifier () {
String deviceld = "FAKE_ID";
TelephonyManager telephonyManager = (TelephonyManager)
getSystemService (Context. TELEPHONY_SERVICE) ;
if (!telephonyManager.getDeviceld().isEmpty()) {
/+xx If there is an IMEl, use it x/
deviceld = telephonyManager.getDeviceld ();

}

if (!Build.SERIAL.isEmpty()) {
/+xx If there is a device serial number return that x/
deviceld = deviceld + Build.SERIAL;

}

SharedPreferences sharedPrefUserDeviceld = getSharedPreferences(

deviceldFromUser” , 0);
if (!sharedPrefUserDeviceld.getString("deviceldFromUser”, "").
isEmpty ()) {
/xx Get the user’'s specified device ID: x/
deviceld = deviceld + sharedPrefUserDeviceld.getString(”
deviceldFromUser”, "");

}

return deviceld;

}

@Override

public boolean onCreateOptionsMenu(Menu menu) {
/+**x Place a menu on each activity %/
getMenulnflater().inflate (R.menu.main_menu, menu);
return true;

117 Jonathan Haddock, 10000112

77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

D RESO APP SOURCE CODE

@Override
public boolean onOptionsitemSelected (Menultem item) {
/% How to route each menu choice x/
Intent intent;
switch (item.getltemld()) {
case R.id.menuServerList:

intent = new Intent(Main.this, ServerList.class);
break;

case R.id.menuPreferences:
intent = new Intent(Main.this, Preferences.class);
break ;

case R.id.menuAbout:
intent = new Intent(Main.this, About.class);
break;
default:
return super.onOptionsltemSelected (item);
}
startActivity (intent);
return true;

Listing 23: Java: RESO App - Main.java

118

Jonathan Haddock, 10000112

O ® N U R W N =

O S ey
® N o U ok W N = O

D RESO APP SOURCE CODE

D.15 XML: RESO App, main_menu.xml

<?xml version="1.0" encoding="utf-8"7>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
<item android:id="@+id/menuServerList”
android:title="@string/ menuRefreshServerList”
android:orderInCategory="450"
android:showAsAction="never"
/>
<item android:id="@+id/menuPreferences”
android:title="Q@string/menuPreferences”
android:orderInCategory="460"
android:showAsAction="never"
/>
<item android:id="0+id /menuAbout”
android:title="@string/menuAbout”
android:orderlnCategory="500"
android:showAsAction="never"
/>

</menu>

Listing 24: XML: RESO App - main_menu.xml

Refresh Server list

Preferences

About

119 Jonathan Haddock, 10000112

© ® N G kR W N =

R R R B W L W W W W W W W RN RNNNRNN NN N R s e s e s s s
B N R S Y ®» 9 G B DR R SO ® N0 a R 0N R ©S Y ® N0 U kR W RN = O

D RESO APP SOURCE CODE

D.16 XML: RESO App, preferences.xml

Arguably one of RESO's more complex layouts, preferences.xml has multiple EditText
and CheckBox elements. Hints, as shown on line 39, give direction to the user advising what
entry should be placed in each box and saves the need for further TextView elements. This
file also shows in-line XML comments to give clarity.

<?xml version="1.0" encoding="utf-8"7>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android”
android:layout_width="match_parent”
android:layout_height="match_parent”
android:orientation="vertical”
android:overScrollMode="ifContentScrolls”
android:scrollbarStyle="insideOverlay”
android:scrollbars="vertical”
>
<!—Health server—>
<ScrollView
android:layout_width=""fill_parent”
android:layout_height="wrap_content”">
<RelativelLayout
android:layout_width="match_parent”
android:layout_height="wrap_content”">
<TextView
android:id="0+id /labelServerAddress”
android:layout_width="wrap_content”
android:layout_height="wrap_content”
android:layout_centerHorizontal="true”
android:layout_marginTop="20dp"
android:text="@string/labelServerAddress”
android:textSize="8pt"
/>
<EditText
android:id="@+id/inputServerAddress”
android:layout_width="300dp"
android:layout_height="wrap_content”
android:layout_centerHorizontal="true"
android:layout_below="Qid/labelServerAddress’
android:layout_marginTop="15dp"
android:cursorVisible="true”
android:background="#FFF"
android:textSize="8pt"
android:textColor="#000"
android:maxLength="250"
android:inputType="text"
android:hint="@string/hintServerAddress">
</EditText>
<TextView
android:id="0+id/labelPrefsServerAddress”
android:layout_width="wrap_content”
android:layout_height="wrap_content”

120 Jonathan Haddock, 10000112

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

94

D RESO APP SOURCE CODE

android:layout_centerHorizontal="true"
android:layout_below="@id/inputServerAddress”
android:layout_marginTop="10dp"
android:text="@string/labelPrefsServerAddress’
android:textSize="8pt"
/>

<TextView
android:id="©@+id/labelPrefsServerAddressValue”
android:layout_width="wrap_content”
android:layout_height="wrap_content”
android:layout_centerHorizontal="true”
android:layout_below="@id/labelPrefsServerAddress”
android:layout_marginTop="10dp"
android:text="@string/labelBlank”
android:textSize="8pt"

1

/>
<!—Control server —>
<TextView

android:id="@+id/labelControlServerAddress”
android:layout_width="wrap_content”
android:layout_height="wrap_content”
android:layout_centerHorizontal="true”
android:layout_below="@id/labelPrefsServerAddressValue

android:layout_marginTop="20dp"
android:text="0string/labelControlServerAddress”
android:textSize="8pt"
/>

<EditText
android:id="@+id/inputControlServerAddress”
android:layout_width="250dp"
android:layout_height="wrap_content”
android:layout_below="@id/labelControlServerAddress”
android:layout_marginTop="15dp”
android:layout_marginLeft="20dp"
android:cursorVisible="true"
android:background="#FFF"
android:textSize="8pt"
android:textColor="#000"
android:maxLength="250"
android:inputType="text"
android:hint="0string/hintServerAddress">

</EditText>

<EditText
android:id="@+id/inputControlServerPort”
android:layout_width="50dp"
android:layout_height="wrap_content”
android:layout_centerHorizontal="true”
android:layout_below="@id/labelControlServerAddress”
android:layout_toRightOf="@id/

inputControlServerAddress”

android:layout_marginTop="15dp"

121

Jonathan Haddock, 10000112

95

96

97

98

9
100
101
102
103
104
105
106
107
108
109
110
111

112
113
114
115
116
117
118
119

120
121
122
123
124
125
126
127
128
129
130

131
132
133
134
135
136
137
138
139
140

141
142

D RESO APP SOURCE CODE

android:layout_marginLeft="5dp"
android:cursorVisible="true”
android:background="#FFF"
android:textSize="8pt"
android:textColor="#000"
android:maxLength="5"
android:inputType="number”
android:hint="@string/hintServerPort”">
</EditText>
<TextView
android:id="0+id/labelControlPrefsServerAddress”
android:layout_width="wrap_content”
android:layout_height="wrap_content”
android:layout_centerHorizontal="true"
android:layout_below="@id/inputControlServerPort”
android:layout_marginTop="10dp"
android:text="@string/labelCurrentControlServerAddress

android:textSize="8pt"
/>
<TextView

android:id="0@+id /labelPrefsControlServerAddressValue”

android:layout_width="wrap_content”

android:layout_height="wrap_content”

android:layout_centerHorizontal="true"

android:layout_below="Qid/
labelControlPrefsServerAddress”

android:layout_marginTop="10dp"

android:text="@string/labelBlank”

android:textSize="8pt"

/>
<!—Remember logins / enable comms—>
<TextView

android:id="0+id /labelRememberLogin”

android:layout_width="wrap_content”

android:layout_height="wrap_content”

android:layout_centerHorizontal="true”

android:layout_below="@id/
labelPrefsControlServerAddressValue”

android:layout_marginTop="10dp"

android:text="0string/labelRememberLogin’

android:textSize="8pt"

/>

<CheckBox

android:id="0@+id /checkboxRememberLogin”

android:layout_width="wrap_content”

android:layout_height="wrap_content”

android:layout_toLeftOf="@Qid/labelRememberLogin”

android:layout_below="@id/
labelPrefsControlServerAddressValue”

/>

<TextView

122 Jonathan Haddock, 10000112

143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

175
176
177
178
179
180
181
182
183
184

185
186
187
188
189
190
191
192

D RESO APP SOURCE CODE

android:id="@+id /labelSendData”
android:layout_width="wrap_content”
android:layout_height="wrap_content”
android:layout_centerHorizontal="true”
android:layout_below="Qid/labelRememberLogin”
android:layout_marginTop="10dp"
android:text="@string/labelSendData”
android:textSize="8pt"

/>

<CheckBox

android:id="0+id /checkboxSendData"
android:layout_width="wrap_content”
android:layout_height="wrap_content”
android:layout_tolLeftOf="Qid/labelSendData"
android:layout_below="Q@id/labelRememberLogin”

/>

<Button
android:id="0@+id /buttonRegisterGoogleCloudMessaging”
android:layout_width="wrap_content”
android:layout_height="wrap_content”
android:layout_centerHorizontal="true"
android:layout_below="@id/checkboxSendData”
android:layout_marginTop="15dp”
android:text="@string/buttonRegisterGCM"
android:onClick="getGCMRegld"
/>

<EditText
android:id="@+id/inputGoogleCloudMessagingRegld”
android:layout_width="wrap_content”
android:layout_height="wrap_content”
android:layout_centerHorizontal="true"
android:layout_below="Qid/

buttonRegisterGoogleCloudMessaging”

android:layout_marginTop="20dp"
android:editable="false"
android:textSize="8pt"
/>

<Button
android:id="@+id /buttonSavePrefs”
android:layout_width="wrap_content”
android:layout_height="wrap_content”
android:layout_centerHorizontal="true"
android:layout_below="Qid/

inputGoogleCloudMessagingRegld”

android:layout_marginTop="15dp”"
android:text="Qstring/buttonSavePrefs”
android:onClick="savePrefs”
/>

<Button

android:id="0@+id /buttonAdvancedPrefs”
android:layout_width="wrap_content”
android:layout_height="wrap_content”

123

Jonathan Haddock, 10000112

193
194
195
196
197
198
199
200
201

D RESO APP SOURCE CODE

android:layout_centerHorizontal="true"
android:layout_below="@id/buttonSavePrefs”
android:layout_marginTop="15dp"
android:text="0string/buttonAdvancedPrefs”
android:onClick="advancedPrefs”

/>

</RelativelLayout>

</ScrollView>
</RelativeLayout>

Listing 25: XML: RESO App - preferences.xml

MR-y
[J_-LT'\ Preferences
=X

Health Server address:
Type server address
Current Health server address:

http://jonsdocs.org.uk/ServerStatusSwitch.php

Control Server address:
Type server address
Current Control server address:
192.168.0.67
- .
Remember login

v .
Enable send comms with server?

Register for GCM

APA91bHRgDJ-

mpOhyOeT8ff8eJRDelrIBsNY4FsknMWorvogk4pnPgXSF2E6GjQASCDy
3ytu_mFgw_iCEZItnbh5beGHazpc540LF0X7qfCjYgjj_7gTEUSI5HIhMuF
U-YgFucYMdZdq2TH_aD2VxjockhkuqiUVM3gf2R16h-MJXRu6uvBg4Ho

Save preferences

Advanced preferences

124

Jonathan Haddock, 10000112

© ©® N o G kR W N =

=l s e
g e W N = o

16
17
18
19
20

21
22

23

24

25

26

27

28

29

30

D RESO APP SOURCE CODE

D.17 Java: RESO App, Preferences.java

This file is responsible for writing preferences to SharedPreferences storage allowing pref-
erences to be preserved across app closures and device reboots. Method getGCMRegId () is
responsible for registering with GCM to allow the device to receive push notifications.

This code includes contributions from an online tutorial (HMKCode, 2014) to register for a
GCM ID. Lines 128-154 register the device before placing the ID in SharedPreferences
storage.

package com.jonathanhaddock.reso;

import android.content.Intent;

import android.content.SharedPreferences;

import android.os.AsyncTask;

import android.os.Bundle;

import android.view.View;

import android.widget .x;

import com.google.android.gms.gcm. GoogleCloudMessaging ;
import java.io.lOException;

public class Preferences extends Main {
GoogleCloudMessaging gcm;
String regid;
String PROJECT_NUMBER = "898826977374"; // Used with GCM to identify
the app/project

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView (R.layout . preferences);
//TODO: Get the control and health server details from Main rather than
determining them again from shared prefs!!

//Make a objects for each visible element of the Activity

TextView labelPrefsServerAddress = (TextView) findViewByld(R.id.
labelPrefsServerAddressValue);

EditText inputServerAddress = (EditText) findViewByld(R.id.
inputServerAddress);

CheckBox checkboxRememberLogin = (CheckBox) findViewByld(R.id.
checkboxRememberLogin);

CheckBox checkboxSendData = (CheckBox) findViewByld(R.id.
checkboxSendData) ;

EditText inputControlServerAddress = (EditText) findViewByld(R.id.
inputControlServerAddress);

TextView labelPrefsControlServerAddressValue = (TextView)
findViewByld (R.id.labelPrefsControlServerAddressValue);

EditText inputControlServerPort = (EditText) findViewByld(R.id.
inputControlServerPort);

EditText inputGCMRegid = (EditText) findViewByld(R.id.
inputGoogleCloudMessagingRegld);

125 Jonathan Haddock, 10000112

31
32

33

34

35

36

37

38
39
40

41

42

43

44

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

65

66
67

68

D RESO APP SOURCE CODE

//Get the preference object:

SharedPreferences sharedPrefServerAddress = getSharedPreferences(”
serverAddress”, 0);

SharedPreferences sharedPrefRememberLogin = getSharedPreferences ("
rememberLogin”, 0);

SharedPreferences sharedPrefSendData = getSharedPreferences(
sendData”, 0);

SharedPreferences sharedPrefControlServerAddress =
getSharedPreferences(" controlServerAddress”, 0);

SharedPreferences sharedPrefControlServerPort =
getSharedPreferences(” controlServerPort”, 0);

SharedPreferences prefGCMRegld = getSharedPreferences(” GCMRegld” ,
0);

//Get the value for each preference
String serverAddress = sharedPrefServerAddress. getString(

”

serverAddress”, "");

boolean rememberlLogin = sharedPrefRememberLogin.getBoolean ("
rememberLogin”, false);

boolean sendData = sharedPrefSendData.getBoolean("sendData”, false
)

String controlServerAddress = sharedPrefControlServerAddress.
getString (" controlServerAddress”, "");

int controlServerPort = sharedPrefControlServerPort. getlnt(”
controlServerPort”, 0);

String GCMRegld = prefGCMRegld. getString (" GCMRegld” , "");

//Place values in relevant on screen boxes:
labelPrefsServerAddress.setText(serverAddress);
inputServerAddress .setText(serverAddress);
labelPrefsControlServerAddressValue.setText(controlServerAddress);
inputControlServerAddress.setText(controlServerAddress);
inputControlServerPort.setText(String.valueOf(controlServerPort));
inputGCMRegid . setText (GCMRegld) ;

if (rememberlLogin) {
checkboxRememberLogin.setChecked (true);
}

if (sendData) {
checkboxSendData.setChecked (true);
}

}

public void savePrefs(View view) {

Intent intent = new Intent(Preferences.this, ServerlList.class); //
Where to go once preferences saved

EditText inputServerAddress = (EditText) findViewByld(R.id.
inputServerAddress);

String serverAddress = inputServerAddress.getText().toString();

CheckBox rememberLogin = (CheckBox) findViewByld(R.id.
checkboxRememberLogin);

CheckBox sendData = (CheckBox) findViewByld(R.id.checkboxSendData)

126

Jonathan Haddock, 10000112

69

70

71

72

73
74
75

76

77

78

79

80

81
82

83

84
85

86

87

88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

D RESO APP SOURCE CODE

EditText inputControlServerAddress = (EditText) findViewByld(R.id.
inputControlServerAddress);

String controlServerAddress = inputControlServerAddress.getText().
toString ();

EditText inputControlServerPort = (EditText) findViewByld(R.id.
inputControlServerPort);

int controlServerPort = Integer.parselnt(inputControlServerPort.
getText().toString());

// Create object of SharedPreferences.

SharedPreferences prefServerAddress = getSharedPreferences(”
serverAddress”, 0);

SharedPreferences prefRememberLogin = getSharedPreferences(”
rememberLogin”, 0);

SharedPreferences prefSendData = getSharedPreferences(”sendData”,
0);

SharedPreferences sharedPrefControlServerAddress =
getSharedPreferences (" controlServerAddress”, 0);

SharedPreferences sharedPrefControllsHealth = getSharedPreferences

("controllsHealth”, 0);

SharedPreferences sharedPrefControlServerPort =
getSharedPreferences (" controlServerPort”, 0);

//now get an Editor so we can write to these preferences

SharedPreferences. Editor editorServerAddress = prefServerAddress.
edit();

SharedPreferences. Editor editorRememberLogin = prefRememberLogin.
edit();

SharedPreferences. Editor editorSendData = prefSendData.edit();

SharedPreferences. Editor editorControlServerAddress =
sharedPrefControlServerAddress.edit();

SharedPreferences. Editor editorControlServerPort =
sharedPrefControlServerPort.edit();

SharedPreferences. Editor editorControllsHealth =
sharedPrefControllsHealth.edit();

//put your value

if (!serverAddress.isEmpty()) {
editorServerAddress . putString (" serverAddress” , serverAddress);

¥

// Find the value of the checkbox:
if (rememberLogin.isChecked()) {

editorRememberLogin.putBoolean(”"rememberLogin”, true);
} else {
editorRememberLogin.putBoolean(”"rememberLogin”, false);

}
if (sendData.isChecked()) {

editorSendData.putBoolean(”"sendData”, true);
1 else {

editorSendData.putBoolean("sendData”, false);
}

Jonathan Haddock, 10000112

105
106

107

108
109
110
111
112
113
114
115
116
117
118
119

120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

136
137
138
139
140
141
142
143
144
145
146

147

148

149
150

D RESO APP SOURCE CODE

}

if (!controlServerAddress.isEmpty()) {

editorControlServerAddress. putString (" controlServerAddress”

controlServerAddress);
editorControlServerPort.putlnt(” controlServerPort” ,
controlServerPort);

}

//commits your edits
editorServerAddress.commit();
editorRememberLogin.commit() ;
editorSendData.commit();
editorControlServerAddress.commit();
editorControlServerPort.commit();
editorControllsHealth .commit();

// Toast to say the preference has been saved:

Toast.makeText(getApplicationContext(), " Preferences._saved”, Toast

.LENGTH_LONG) . show () ;
startActivity (intent);

public void advancedPrefs(View view) {

}

// Allows the app to move to the Advanced Preferences screen
startActivity (new Intent(Preferences.this, AdvancedPrefs.class));

public void getGCMRegld(View view) {

//Get a GCM registration ID and write it to preferences
new AsyncTask<Void, Void, String>() {
@Override
protected String dolnBackground(Void ... params) {
try {
if (gcm = null) {
gcm = GoogleCloudMessaging . getlnstance (
getApplicationContext());
}
regid = gcm.register (PROJECT_.NUMBER) ;
} catch (1OException ex) {

//Do nothing
}

return regid;

}

@Override
protected void onPostExecute(String regld) {

SharedPreferences prefGCMRegld = getSharedPreferences ("

GCMRegld” , 0);

SharedPreferences. Editor editorGCMRegld = prefGCMRegld .

edit();
editorGCMRegld . putString (" GCMRegld" , regld);
editorGCMRegld . commit () ;

EditText inputGCMRegid = (EditText) findViewByld(R.id.

128

Jonathan Haddock, 10000112

151
152
153
154
155

D RESO APP SOURCE CODE

}

inputGoogleCloudMessagingRegld);
inputGCMRegid . setText(regld);

}.execute(null, null, null);

Listing 26: Java: RESO App - Preferences.java

129

Jonathan Haddock, 10000112

© ® N G kR W N =

NORNON N R E s s e m
B O RN 2 S © ® 9 o G R ® N = O

25

26
27
28

29

30

31
32
33
34
35
36
37
38
39

D RESO APP SOURCE CODE

D.18

Java: RESO App, ServerList.java

ServerList. java downloads health data in the form of XML (see Section C) and parses it
to dynamically generate a view. In the event a server is found to be down a sound is played.
A try/catch mechanism is used in order to prevent the app from crashing in the event the
XML file is unobtainable.

package com.jonathanhaddock.reso;

import
import
import
import
import
import
import
import
import
import
import
import
import
import
import

public

android.content.Intent;
android.graphics. Color;
android . media. MediaPlayer;
android.os.Bundle;
android.os.StrictMode;
android.view . View;

android . widget . Button;
android .widget. LinearLayout;
android . widget . TextView;
android . widget. Toast;
org.w3c.dom.x;
org.xml.sax.InputSource;

javax.xml.parsers.DocumentBuilder;
javax.xml.parsers.DocumentBuilderFactory;
java.net.URL;

class ServerlList extends Main {

boolean serversDown;

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

StrictMode . ThreadPolicy policy = new StrictMode. ThreadPolicy.
Builder (). permitAll (). build ();

StrictMode.setThreadPolicy(policy); //Bypasses requirement to
background the network operation — testing only

if (mainServerAddress().equals("")) {
// If there is no health server address set, display a toast
to say so and go to the preferences activity

Toast.makeText(getApplicationContext (), "Please_set_server.
address”, Toast.LENGTH.SHORT) .show () ;
Intent intent = new Intent(ServerList.this, Preferences.class)

startActivity (intent);

}
/+x*x Create a new layout to display the view x/
LinearLayout layout = new LinearLayout(this);

layout.setOrientation(LinearLayout.VERTICAL);
/+x+ Create a new array to display the results x/
Button name[];

130

Jonathan Haddock, 10000112

40
41
42
43

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

70
71
72
73
74
75
76
77
78
79
80
81
82
83

84
85

86
87

D RESO APP SOURCE CODE

try {
// If we've been able to get the XML file, parse it.
URL url = new URL(mainServerAddress());
DocumentBuilderFactory dbf = DocumentBuilderFactory.
newlnstance () ;
DocumentBuilder db = dbf.newDocumentBuilder () ;

Document doc = db.parse(new InputSource(url.openStream()));
doc.getDocumentElement (). normalize () ;

Nodelist nodelist = doc.getElementsByTagName (" server”);

// Assign textview array length by arraylist size
name = new Button[nodelist.getlLength()];

for (int i = 0; i < nodelist.getlLength(); i++) {

Node node = nodelist.item(i);

name[i] = new Button(this);

Element fstElmnt = (Element) node;

Nodelist namelist = fstEImnt.getElementsByTagName (" name”
Element nameElement = (Element) namelist.item(0);

namelist = nameElement. getChildNodes();
name[i].setText((namelList.item(0)).getNodeValue());
name[i].setTextSize (24);

name[i].setld(i);
name[i].setOnClickListener(namelListener);

].
].

i

NodelList statelist = fstEImnt.getElementsByTagName(
)

Element stateElement = (Element) statelist.item(0);

statelList = stateElement.getChildNodes();

String serverState = statelist.item(0).getNodeValue();

if (serverState.equals(”"down”)) {

serversDown = true;
name[i].setTextColor(Color.parseColor("#FF0000"));
} else {

name[i].setTextColor(Color.parseColor("#00FF00"));

layout .addView (name[i]) ;

} catch (Exception e) {

//If there was a problem obtaining the XML, state so rather
than throwing an error

TextView errorText = new TextView(this);

errorText.setText (" Problem_contacting._server._or.no.server.
address._set”);

errorText.setTextSize (24);

errorText.setTextColor(Color.parseColor("#FF0000"));

131

Jonathan Haddock, 10000112

"state’

88
89
90
91
92
93
94

95
96
97
98
99
100
101
102
103
104
105

D RESO APP SOURCE CODE

layout .addView(errorText);

}

/+*x Display the layout built by above Java code x/
setContentView (layout);
if (serversDown) {

//Play a sound: See http://developer.android.com/guide/topics/
media/mediaplayer. html and http://www. tutorialspoint.com/
android/android_mediaplayer . htm

MediaPlayer.create(this, R.raw.serverdownalert).start();

}

View.OnClickListener namelistener = new View.OnClickListener () {
public void onClick(View arg0) {
Intent intent = new Intent(ServerList.this, DetailXML.class);
startActivity (intent);

Listing 27: Java: RESO App - ServerList.java

alaol

L 'J ServerList
Pk

Serverl
DNSO1

Server2

DHCPO1
DNSO016

Jonathan Haddock, 10000112

© ® N G R W N e

==
= o

12
13
14
15
16
17
18
19
20
21
2
23
24
25
26
27
28
29
30
31
32
33
34
35

E JAVA: RESO CONTROL SERVER

E

Java: RESO Control Server

This appendix contains source code for the RESO Control Server.

E.1 Java: RESO Control Server, Main.java

Main. java listens on a port for the purposes of receiving messages from the remote mobile

device.

package com.resoServerSide;

import java.io.BufferedReader;
import java.io.lOException;
import java.io.lnputStreamReader;
import java.io.PrintWriter;
import java.net.ServerSocket;
import java.net.Socket;

public class Main {

//Code from http://content.gpwiki.org/index.php/Java: Tutorials:
Simple_TCP_Networking

public static void main(String[] args) throws Exception {
Main.openSocket () ;

}
public static void openSocket() throws Exception {
ServerSocket serverSocket = null;
try {
serverSocket = new ServerSocket(1234);

System.out. println (" Socket_has_been_made");

} catch (IOException e) {
System.err.println (" Could_not_listen_on_port:.1234.");
System . exit (1);

}

Socket clientSocket = null;

try {
System .out. println (" Waiting_for_connections...");
clientSocket = serverSocket.accept();

} catch (1OException e) {
System.err.println (" Accept_failed.”);
System . exit(1);

}

PrintWriter out = new PrintWriter(clientSocket.getOutputStream (),
true);

133

Jonathan Haddock, 10000112

36

37
38
39
40
41
42
43
44
45

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

68
69
70
71
72
73
74

75
76
77

78
79
80

E JAVA: RESO CONTROL SERVER

BufferedReader in = new BufferedReader(new InputStreamReader (
clientSocket .getlnputStream()));

String message;
message = in.readlLine();
if (message != null && message.length() > 0) {
long timeStamp = System.currentTimeMillis() / 1000;
String plainText = "";
try {
plainText = AES.decrypt(unwrap(message), AES.encryptionKey
)
} catch (1OException e) {
//Do nothing
System .out. println ("JAH: _Junk_message_received");

}

//Split the message on ;
CharSequence delimeter = ";";
if (plainText.contains(delimeter)) {

String [] splitMessage = plainText.split(";");

long messageTimestamp = Long.parseLong(splitMessage [1]);
if (timeStamp — messageTimestamp > 5) {
System.out. println ("ALERT: _Message_was_stale”);
out.close();
in.close();
clientSocket.close();
serverSocket.close();
Main . openSocket () ;
} else {
//If the message isn 't stale, continue processing:
//Check for valid device ID:
if (splitMessage[2].equals(”359290051743494
TA4750GQTEJonathanPhone”)) {
System.out. println (splitMessage [0]) ;

//Check for a valid password:
if (splitMessage[3].equals(”password”)) {
processCommand (splitMessage [0]) ;
} else {
System .out. println ("JAH: _Instruction._received.
from_an_authorised _device_.(" + splitMessage
[2] + ").but_invalid _password_specified"”);

} else {
System .out. println ("JAH: _Instruction_received _from
—an_unauthorised_device_identified_as." +
splitMessage [2]) ;

} else {

134 Jonathan Haddock, 10000112

81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

104
105

106
107
108
109
110
111
112
113
114
115
116
117
118

119
120
121
122
123
124
125
126

E JAVA: RESO CONTROL SERVER

System.out. println (" Malformed_message”);
out.close();
in.close();
clientSocket.close();
serverSocket.close();
Main.openSocket () ;
}

}

out.close();

in.close();

clientSocket.close();

serverSocket.close();

Main.openSocket () ;

}

public static String processCommand(String command) {
String status = "Could.not.process.command” ;
ProcessBuilder systemCommand = new ProcessBuilder("");

if (command.equals("exit”)) {
System . exit (0);
} else if (command.equals("rebootHH")) {
systemCommand = new ProcessBuilder("bash”, "—c", "VBoxManage_—
g-controlvm _Ubuntul4—04LTS_Desktop32._reset”);
} else if (command.equals("startHH")) {
systemCommand = new ProcessBuilder(”"bash”, "—c", "VBoxManage_—
g-startvm _Ubuntul4—04LTS_Desktop32”);

1

}

try {
systemCommand . start () ;

} catch (1OException e) {
//Do nothing
System.out. println (" There_.was_.an_exception...”);

}

return status;

}

private static byte[] unwrap(String wrappedMessage) {
wrappedMessage = wrappedMessage.substring (1, wrappedMessage.length

() - 1);

String [] arrWrappedMessage = wrappedMessage.split(",.");

byte[] unwrappedMessage = new byte[arrWrappedMessage.length];

for (int i = 0; i < unwrappedMessage.length; i++) {
unwrappedMessage[i] = Byte.parseByte(arrWrappedMessage[i]);

}

return unwrappedMessage;

Listing 28: Java: RESO Control Server - Main.java

135

Jonathan Haddock, 10000112

=W N e

o ® N o W

10
11
12
13
14
15

16
17

18

19
20
21
22

23
24

25

26

27
28

E JAVA: RESO CONTROL SERVER

E.2 Java: RESO Control Server, AES.java

AES. java contains the functions required for encrypting and decrypting messages sent from
the mobile device. This code uses contributions from Fernandes (2014).

package com.resoServerSide;

/+x Modified from: https://gist.github.com/bricef/2436364

x NOTE: key and plaintext must both be multiples of 16 or padded with \0
unless you use AES/CBC/PKCS5Padding

* NOTE: IV must also be 16 bytes long */

import javax.crypto.spec.SecretKeySpec;
import javax.crypto.spec.lvParameterSpec;
import javax.crypto.Cipher;

public class AES {
static String IV = "ABCDEFGHIUKLMNOP"; //Initialisation vector
static String encryptionKey = "0123456789abcdef0123456789abcdef”;

public static byte[] encrypt(String plainText, String encryptionKey)

throws Exception {

Cipher cipher = Cipher.getlnstance (”"AES/CBC/PKCS5Padding”) ;

SecretKeySpec key = new SecretKeySpec(encryptionKey.getBytes(”"UTF
—8"), "AES");

cipher.init(Cipher .ENCRYPT.MODE, key, new IvParameterSpec(IV.
getBytes ("UTF-8")));

return cipher.doFinal(plainText.getBytes("UTF-8"));

}

public static String decrypt(byte[] cipherText, String encryptionKey)

throws Exception {

Cipher cipher = Cipher.getlnstance ("AES/CBC/PKCS5Padding”) ;

SecretKeySpec key = new SecretKeySpec(encryptionKey.getBytes(”"UTF
—8"), "AES");

cipher.init(Cipher .DECRYPT_.MODE, key, new IvParameterSpec(IV.
getBytes ("UTF-8")));

return new String(cipher.doFinal(cipherText), "UTF-8");

Listing 29: Java: RESO Control Server - AES.java

136 Jonathan Haddock, 10000112

Acronyms

F Glossary

Acronyms

2FA 2 Factor Authentication.

ASP Application Service Provision.

DMZ De-Militarised Zone.

DoS Denial of Service.
FOSS Free Open Source Software.
GCM Google Cloud Messaging.

hypervisor Software that allows a computer to run multiple operating systems, simultane-
ously, on the same hardware. Examples of hypervisors are VMware ESXi and Microsoft
Hyper-V..

IID Iterative and Incremental Development.

IMEI International Mobile Equipment Identity.

Managed Solution Provider Managed Solution Providers offer services to clients who
have elected to outsource a service. An example would be a company which monitors
a client’s I'T systems health..

NDK Native Development Kit.

NMS Network Monitoring System.

OS Operating System.

OTP One Time Password.

PSN Public Sector Network.

Salting The process of taking a user provided password and adding an additional secret

prior to hashing. As a result, it is significantly more difficult to brute force the hashed
password so long as the salt remains private.

137 Jonathan Haddock, 10000112

Acronyms

SDK Software Development Kit.

SNMP Simple Network Management Protocol.
TDD Test Driven Development.

VCS Version Control System.

VM Virtual Machine.

138 Jonathan Haddock, 10000112

	Abstract
	Acknowledgements
	I Introduction
	Introduction
	Background
	Hypothesis
	Business case
	Summary
	Who will this benefit?
	Summary of benefits
	Impact on the IT team
	Cost estimate
	Estimated savings
	Resource estimate
	Risks
	Consequences of project rejection

	II Literature review & existing solutions
	Project Management
	Traditional / Waterfall
	Agile Software Development
	Test driven development
	Iterative and incremental development

	Monitoring systems
	Cloud computing
	Existing solutions
	Nagios
	Smokeping
	Ganglia
	GFI Max Remote Management

	Encryption
	Encryption on mobile devices

	Literature review conclusion

	III Research
	Research methods
	Research methods conclusion

	Workplace observations
	Survey research
	Reasoning behind questions
	Survey response analysis
	Conclusion

	Interview responses
	Conclusion

	Research conclusions

	IV Solution
	Security considerations
	The device
	The user
	Cloning the device and disgruntled employees
	Remote control - arbitrary commands
	Distributing command details

	System design
	Mobile platforms
	Requirements
	Hardware support
	Secure communications
	Instigate corrective action
	Push notifications
	Interoperability

	Control Server

	Solution development
	Generating the UI
	Device identifier
	Adding encryption
	GCM

	Deployment and usage scenarios

	V Testing and validation
	Testing
	Hardware platforms
	Encryption
	Replay attack defence
	Push notifications
	Protecting against unauthorised devices
	Protecting against unauthorised users

	VI Conclusions and evaluation
	Key contributions
	Reflection on achievements related to aims and objectives
	Comparison to the research field
	General strengths and weaknesses
	Commercial value
	General conclusions
	Further work

	VII Appendix
	Survey questions
	Interview questions
	XML Specification
	RESO App source code
	XML: RESO App, AndroidManifest.xml
	XML: RESO App, strings.xml
	Java: RESO App, About.java
	XML: RESO App, about.xml
	XML: RESO App, advancedprefs.xml
	Java: RESO App, AdvancedPrefs.java
	Java: RESO App, AES.java
	XML: RESO App, detail.xml
	Java: RESO App, DetailXML.java
	Java: RESO App, GcmBroadcastReceiver.java
	Java: RESO App, GcmMessageHandler.java
	XML: RESO App, login.xml
	Java: RESO App, Login.java
	Java: RESO App, Main.java
	XML: RESO App, main_menu.xml
	XML: RESO App, preferences.xml
	Java: RESO App, Preferences.java
	Java: RESO App, ServerList.java

	Java: RESO Control Server
	Java: RESO Control Server, Main.java
	Java: RESO Control Server, AES.java

	Glossary
	Acronyms

